Thèse pour l’obtention du grade de Docteur en Sciences Physiques de l’Université du Maine
Par
Thierry Besnard

Etude des formations nuageuses troposphériques par Spectrométrie Infrarouge

Soutenue le 17 Novembre 2004 devant le jury composé de

Pr. P. WEIHS
Pr. C. N. LONG
Ing. F. ZANGHI
Dr J.-F. GAYET
Dr D. GILLOTAY
Dr J.-M. GRENECHE
Dr L. BERGER
Pr G. BROGNEZ

Universität für Boden Kultur, Vienne, Autriche.
PNNL, Richland, WA, USA.
Météo France, DSO/DOS, Trappes, France.
Université Blaise Pascal, Clermont Ferrand, France
IASB/BIRA, Bruxelles, Belgique.
Université du Maine, Le Mans, France.
Université du Maine, Le Mans, France.
Université de Lille, France.

Rapporteur
Rapporteur
Invité
Examinateur
Codirecteur de thèse
Directeur de thèse
Invité
Tables des matières

Remerciements ... 6
Préambule .. 8
Chapitre 1 : .. 9
 Introduction ... 9
I-1 Historique .. 10
 I-2 L’instrumentation actuelle .. 13
 I-2-1 Les capteurs vents ... 13
 I-2-2 Mesures de température et d’humidité relative de l’air 15
 I-2-3 Autres types de capteurs ... 18
 I-3 La prévision météorologique ... 20
 I-4 Historique de l’observation nuageuse ... 20
Chapitre 2 ... 22
 II- Développement des nuages ... 23
 II-1 Développement actif de type cumuliforme ... 23
 II-2 Développement passif de type stratiforme ... 24
 II-3 Les stratocumulus ... 26
 II-4 Taille des nuages .. 27
 II-5 Modèle descriptif des nuages ... 28
 II-5-1 Introduction. .. 28
 II-5-2 Distributions de tailles de particules constitutives des nuages 29
Chapitre 3 ... 31
 III- Méthodes expérimentales de mesure de la couverture nuageuse 31
 I – Introduction .. 32
 II Observateurs humains .. 34
 IV Radiosondes – Méthode de Chernyik Elskridge .. 36
 V- Imageurs de nuages – Cas du Total Sky Imager 45
 V-1 Introduction.. 45
 V-2 Cas du Total Sky Imager .. 45
Chapitre 4 ... 47
 IV- Cahier des charges scientifique, technique et marketing. 47
 II-Principe de mesure. ... 49
 II-1 Généralités ... 49
 II-2 Application à la troposphère ... 50
 II-3 Emissivité nuageuse .. 51
 II-4 Instrumentation retenue ... 51
 II-5 Conclusion .. 55
Chapitre 5 ... 56
 Validation du concept de mesure ... 56
 I- Protocole expérimental. .. 57
 II- Montage expérimental ... 57
 III- Conversion des données de température en altitude 61
 III-1 Introduction .. 61
 III-2 Profils moyens issus de radiosondages ... 61
 II-3 Modèle MSISE ... 61
 IV-4 Résultats expérimentaux ... 65
 IV-4-1 Résultats sur le site de Trappes ... 65
“We are the sum of our experiences.”

Unknown Author
Remerciements.

Avant tout, je souhaiterais dédier ce travail de thèse à deux personnes qui ont particulièrement compté pour moi. Tout d’abord ma mère qui a su tout au long des années m’apporter son soutien sans faille et des encouragements face aux épreuves de la vie ; d’autre part mon ami Didier GILLOTAY qui a su tout au long des années me démontrer son amitié sans faille.

Je souhaiterais sincèrement remercier le Dr Jean Marc GRENECHE tout d’abord pour m’avoir initié, alors étudiant, à la recherche il y a quelques années, à travers des mesures sur les verres métalliques puis d’avoir accepté, assisté de Laurent BERGER (Maître de Conférence à l’Université du Maine) et Didier GILLOTAY (Chef de travaux à l’Institut d’Aéronomie Spatiale de Belgique) de relever ce challenge d’une première thèse de physique atmosphérique à l’Université du Maine. J’espère avoir ouvert la voie à d’autres travaux de thèse et au développement au sein de l’Université du Maine d’une nouvelle thématique de recherche dans cette discipline passionnante.

Je souhaite remercier plus particulièrement Laurent pour avoir su vaincre mes réticences à l’utilisation de certains langages informatiques et également pour son indéfectible support aussi bien sur le plan humain que scientifique.

Ma vive reconnaissance va également au Professeur Charles N. LONG du Pacific Northwest National Laboratory (PNNL) pour m’avoir permis de participer à la campagne de mesure sur le site du Southern Great Plain (SGP) dans le cadre du programme ARM (Atmospheric Radiation Measurement) , pour ses conseils avisés tout au long de cette thèse et pour avoir accepté de rapporter ce mémoire.

Toute ma gratitude va également au Professeur Philippe WEIHS de l’Université de Vienne pour avoir réalisé le fastidieux travail de rapport et pour participer au jury.

Je tiens à remercier Mr Fabrice ZANGHI pour son aide tout au long de la thèse ainsi que sa participation au jury et Mr Michel LEROY de la DSO/DOS de Météorologie France pour m’avoir permis de collecter sur le site d’essai de Trappes la plus grande partie des données expérimentales ayant permis de réaliser ce travail et également le Dr Iliana GENKOVÀ du Pacific Northwest National Laboratory pour le travail en commun d’exploitation des données de la campagne au SGP dans une ambiance parfois orageuse mais toujours productive.

Un grand merci à Yvan LABAYE pour son indéfectible amitié depuis nos premières années à l’Université du Maine et pour m’avoir initié aux simulations numériques selon la méthode de Monte Carlo.

Je souhaiterais également remercier mon oncle Mr Claude FOURNIER pour son aide et ses conseils avisés dans la conception de plusieurs des instruments développés au cours de la thèse.

Je souhaite également remercier de leur aide dans la préparation des instruments et des programmes de traitement Dominique JOLY de l’Université du Maine ainsi que Willy DECUYPER et Caroline FAYT de l’Institut d’Aéronomie Spatiale de Belgique.
Un grand remerciement à Robert M. YOUNG qui a su, il y a plus de dix ans, me communiquer sa passion pour la physique de l’atmosphère de la même manière qu’il l’avait reçu du Professeur GILL à l’Université du Michigan.

À cette occasion, tous mes remerciements vont à l’équipe ATMOS pour avoir su accepter « les humeurs de leur chef » durant cette phase stressante de rédaction et également l’équipe de la société « Le Mans Usinage » pour la construction des instruments.

Finalement, je souhaite vivement que l’embryon de pôle industriel sarthois composé de MeteoDyn, Cenosys et ATMOS continue sa croissance dans les années à venir.
Préambule

Les mesures météorologiques qu’elles soient à des fins climatologiques ou autres requièrent trois types de systèmes de mesure permettant de travailler à trois échelles :

- Macro échelle (Échelle du pays).
- Meso échelle (Échelle de la région).
- Micro échelle (Échelle de la ville).

Un des développements de la conquête spatiale dans les dernières décennies a permis la mise au point de satellites dont les systèmes optiques permettent des mesures de nébulosité précises à macro échelle grâce aux satellites géostationnaires et à méso échelle grâce aux satellites à orbite basse. Cependant ce second type de mesure ne fournit actuellement, de par son principe, des informations qu’à la fréquence d’une fois toutes les 90 minutes.

Au niveau micro échelle, la couverture nuageuse est à l’heure actuelle la seule grandeur estimée et non mesurée. C’est pourquoi, l’objectif du travail présenté dans cette thèse a été concentré sur la mise au point d’un instrument de mesure de la couverture nuageuse permettant d’accéder ainsi à ce paramètre de jour comme de nuit. En effet, selon les demandes des utilisateurs potentiels que nous avons pu interroger (notamment en milieu aéroportuaire), cet instrument devra fournir des informations dans un délai de l’ordre de quelques minutes.

C’est en partant de ces considérations que lors d’un congrès à Helsinki en 1998 lors de l’European Conference on Ultra Violet (ECUV meeting), l’idée d’un instrument de monitoring diurne et nocturne de la couverture nuageuse naquit dans notre groupe de recherche et devint quelques années plus tard un sujet de thèse que décrit ce mémoire.

Cette thèse étant la première sur ce sujet au sein de l’Université du Maine, il m’a semblé utile d’introduire la météorologie en tant que science par un historique afin de nous placer dans le sujet. Nous poursuivrons ensuite par un bref aperçu de la physique de ces êtres de structures mal définies qui gouvernent le temps qu’il fait et qu’il fera, que sont les nuages. Le chapitre suivant décrira une étude aussi exhaustive que possible en faisant l’état de l’art actuel et des besoins du marché. En effet, ce sujet ne doit pas être traité, à mon sens, uniquement dans une vision scientifique mais de manière « scientifico-marketing ». De plus, pour la communauté des météorologistes à laquelle j’appartiens, les instruments sont des outils qui doivent répondre non seulement à des besoins en termes météorologique et fonctionnel, mais aussi en terme budgétaire car ils doivent répondre à des contraintes financières de la part des utilisateurs. La suite du mémoire sera plus usuelle en reprenant les approches théoriques et expérimentales qui ont été nécessaires.

Chapitre I : Introduction
I-1 Historique

Historiquement, les hommes se sont très tôt intéressés au temps qu’il faisait. On en trouve des traces dans des grottes en Ecosse via des représentations rupestres du soleil et des nuages datées entre -4000 et -8000 avant Jésus Christ. Les premières traces écrites sont probablement dues au physicien Chinois Nei Tsing Su Wen vers -3000 avant Jésus Christ, dans un ouvrage conservé à la bibliothèque de Pékin.

La première trace de normalisation dans l’observation des phénomènes climatiques est à mettre à l’actif de l’Occident et plus particulièrement de l’Empereur Charlemagne qui publia un édit fixant les directions du vent par rapport aux points de lever et de coucher du soleil.

L’aspect métrologique et instrumental de l’observation des grandeurs liées au temps a connu un fort essor au XV siècle en Italie avec notamment Torricelli (Baromètre), Alberti (anémomètre). Cette vague d’invention se déplaça au XVII siècle vers l’Europe du Nord et plus particulièrement vers l’Angleterre et les Pays Bas avec Hooke (anémomètre avec enregistreur), Huygens (thermomètre) et Towneley (pluviomètre).

Pendant que les physiciens travaillaient d’arrache pied sur les instruments, les naturalistes tel Lamarck assemblaient et interprétaient les observations avec déjà, à l’esprit, la prévision du temps.

Cette pléthore de travaux n’avait pas encore été reconnue comme une science à part entière et il fallut attendre 1778 avec la fameuse encyclopédie de Diderot et d’Alembert qui baptisa cette nouvelle science « météorologie », définie comme suit :

« La météorologie est la science des météores, qui explique leurs origines, leurs formations, leurs différentes espèces, leurs apparaences ».

Pour les non initiés il me paraît opportun de définir le mot de météores peu usité dans le vocabulaire courant :

« Les météores sont des corps ou apparaences d'un corps qui paraissent pendant quelques temps dans l'atmosphère, et qui sont formés des matières qui y nagent ».

Il existe ainsi trois catégories de météores :

- météores ignés, composés d'une matière sulfureuse qui prend feu : éclairs, tonnerre, feux follets, étoiles tombantes.
- météores aériens, formés d'extralaisons.
- météores aqueux, composés de vapeurs ou de particules aqueuses : nuages, arcs-en-ciel, grêle, neige, pluie, rosée.

Il est intéressant de noter que Descartes dans son « Discours de la méthode » s’est également intéressé à définir cette nouvelle science.

Tous ces scientifiques ressentaient bien à travers leurs travaux quotidiens, que les observations effectuées au niveau du sol ne permettaient qu’une description partielle des
phénomènes présidant au temps qu’il fait et surtout qu’il fera. C’est ainsi que l’idée de mesurer les profils verticaux naquit.

Ce challenge fut relevé en 1896 par le Baron Léon Teisserenc de Bort (figure 1) à l’Observatoire de Trappes qui abrite toujours à notre époque la Division des Services d’Observation de Météorologie France.

Figure 1: Le Baron Léon Teisserenc de Bort

Pour être simple de mise en œuvre, l’aérostat de Léon Teisserenc de Bort ne pouvait pas utiliser un système à air chaud. C’est pourquoi, il décida d’utiliser un ballon gonflé à l’hydrogène du fait de la facilité de production de ce gaz, mais en acceptant les dangers de ce gaz.

Sous cette enveloppe, il fixa une nacelle en osier portant un thermographe, un hygrographe et un barographe enregistrant les paramètres température, humidité relative et pression barométrique de l’air durant le vol (figure 2).

Figure 2 : Nacelle de Teisserenc de Bort
Malgré cet ensemble d’appareils de mesure, le problème de la mesure de la vitesse et de la direction du vent durant le vol restait entier. C’est pourquoi, les suspentes de la nacelle furent équipées d’un repère de pointage et deux théodolites distants d’une centaine de mètres furent placés dans le parc instrumental. À intervalle de temps régulier le site et l’azimut de chaque ballon étaient relevés et ce afin de calculer la vitesse et la direction du vent entre les deux positions.

Sur la figure 3, le hangar de gonflage (toujours existant de nos jours) est présenté avec une nacelle quelques instants avant le décollage.

![Image de la nacelle et du hangar de gonflage](image)

Figure 3 : Hangar de gonflage et nacelle au décollage à l’Observatoire Météorologique de Trappes, France.

Au début du XXᵉ siècle, l’ensemble des travaux mentionnés précédemment de manière non exhaustive, ont permis d’établir la structuration de l’atmosphère telle qu’elle est définie actuellement (figure 4).
I-2 L’instrumentation actuelle

Les progrès de l’électronique durant la seconde guerre mondiale (projet « Main Gate » - Los Alamos) et l’avènement des semi-conducteurs dans les années soixante-dix ont permis une automatisation des capteurs et des stations automatiques.

Dans ce paragraphe, nous ferons un tour d’horizon rapide des différentes technologies pour les principaux paramètres mesurés dans le réseau de mesures automatique mondial.

I-2-1 Les capteurs vents

La plus grande part des capteurs déployés dans le réseau mondial est de type électromécanique ces capteurs possèdent des parties mobiles générant des signaux électriques qui peuvent être ou non convertis en signaux numériques à bord. Ces capteurs possèdent une bande passante typique de 2 Hz, c'est-à-dire que le capteur détectera des phénomènes de variation du vent durant au moins 500 ms avec une résolution du dixième et une précision de quelques dixièmes de mètre par seconde, selon les types d’équipements.
Sur la figure 5 est présenté un capteur électromécanique combiné baptisé « wind monitor » qui est largement utilisé pour des applications où le champ de vent est établi.

Figure 5 : Capteur vent électromécanique de type « wind monitor »

Comme cela a déjà été évoqué l’avènement des semi-conducteurs a permis de très notables progrès et a ainsi conduit à la mise au point de capteurs statiques utilisant des ultrasons et dont la bande passante peut atteindre jusqu’à 32 Hz.

La figure 6 présente un tel capteur ultrasonique tridimensionnel. Il est important de noter que la fiabilité de ces capteurs qui permettent d’accéder à l’échelle du cm/s est limitée par des têtes de mesure exemptes de salissures ce qui n’est pas réalisable dans le cadre d’un déploiement en continu.

Figure 6 : Capteur ultrasonique tridimensionnel
I-2-2 Mesures de température et d’humidité relative de l’air

Pour la mesure de la température de l’air, on trouve principalement deux types d’éléments sensibles :

- les jonctions platines (Pt 100 et Pt 1000)
- les thermistances.

Les deux dispositifs possèdent des avantages et des inconvénients. L’école européenne de météorologie a une tendance à l’utilisation des jonctions platine montées en pont de Kelvin alors que l’école Nord Américaine s’oriente plus vers une technologie à base de thermistances. Il est très difficile de se prononcer sur ce choix qui est a priori plus lié à des débats d’écoles que pour des raisons scientifiques et/ou technologiques.

Pour accéder à l’humidité relative, le principe le plus communément utilisé du fait de sa facilité de mise en place et de son coût faible, est la sonde capacitiva. Il s’agit d’un film de polymère qui, placé entre deux électrodes, absorbe à la surface des molécules d’eau modifiant ainsi sa permittivité diélectrique proportionnellement à la quantité d’eau piégée.

Un autre équipement est l’hygromètre à miroir basé sur le principe de condensation sur une surface froide, mais qui ne peut être utilisé en raison de son coût élevé.

Dans les années cinquante à quatre vingt, un dernier système a été utilisé il s’agit du psychromètre qui combine sur la base de l’hémagramme à partir d’une mesure de température sèche et de température humide permettant de déterminer l’humidité relative de l’air. La mèche assurant l’humectation de la sonde de température humide est assurée par de l’eau distillée ou permutée pompée par une micro pompe. Cet instrument a été quasiment abandonné de nos jours du fait des difficultés de maintenance (pollution des mèches, usure des pompes, fourniture de fluide, remplissage des réservoirs).

Les mesures d’humidité relative qu’elles soient réalisées au sol ou verticalement permettent de suivre l’eau en phase gazeuse dans l’atmosphère et par voie de conséquence d’évaluer l’un des maillons du cycle de l’eau dans l’atmosphère (Figure 7).
Dès le début des mesures de température et d’humidité relative, les expérimentateurs constatèrent que les sondes devaient être abritées du rayonnement solaire et des précipitations dans des enceintes en bois ajourées (Stevenson) afin d’éviter une source d’erreur sur la mesure baptisée erreur radiative. Sur la Figure 8 est présenté un dispositif historique (valable jusqu’aux environs des années 70) et sur le figure 9 un dispositif actuel basé sur des sondes électroniques de mesure de l’humidité relative et sur des sondes platine montées en pont de Kelvin pour la mesure de la température de l’air.

Figure 8 : Aménagement historique d’un abri météorologique de type « Stevenson ».

Figure 9 : Aménagement d’un abri de type Stevenson avec des sondes automatiques de température (désignées par T) et capacitivess permettant d’accéder à l’humidité relative de l’air (désignées par U).
Pour des raisons d’encombrement pour des applications délocalisées ou par des structures mobiles, des abris de taille plus réduite baptisés abris multi-plateaux ont été développés. Un exemple est présenté sur la figure 10.

Figure 10 : Abri miniature multi plateaux.

L’erreur radiative dont nous avons parlée précédemment, est significativement réduite lorsque la sonde est localisée sous abri, mais ne peut cependant être négligée. Ce paramètre est, comme on peut l’imaginer de manière intuitive, lié à la vitesse du vent, à l’ensoleillement et à l’angle zénithal solaire. La figure 11 présente des valeurs d’erreur radiative pour l’abri multi-plateaux fabriqué par R.M. YOUNG.

Figure 11 : Valeurs typiques de l’erreur radiative pour l’abri multi-plateaux fabriqué par R.M. YOUNG.
Pour des applications où une estimation très précise de la température est requise, il est nécessaire pour éviter une instrumentation très lourde et des traitements sujets à caution, de développer un abri à erreur radiative constante la plus faible possible. Différentes équipes dont celle de GILL à l’Université du Michigan se sont intéressées à la conception d’abri. Une des solutions a été d’installer dans l’abri un dispositif de ventilation d’où le nom de « ventilation forcée ».

Sur la figure 12 est présenté l’abri à ventilation fabriqué par R.M. YOUNG Company et directement issu des travaux de l’équipe de GILL.

Figure 12 : Abri à ventilation forcée de R.M. YOUNG

I-2-3 Autres types de capteurs

Nous venons de nous intéresser aux principaux types de capteurs. Il serait difficile d’établir une liste exhaustive de tous les paramètres mesurables et mesurés. Nous pouvons mentionner cependant les principaux et/ou ceux dont le devenir paraît prometteur vu les nouvelles problématiques climatologiques.

- Le baromètre permet d’accéder via la grandeur pression à la densité de l’atmosphère. Son évolution est un indicateur de l’arrivée de hautes pressions, synonyme de beau temps, ou de dépressions, synonyme de précipitations et de vent.
- Le pluviomètre permet de quantifier les précipitations, conduisant par corrélation avec des mesures de niveau d’eau des cours d’eau et des nappes phréatiques à la prédiction des crues éventuelles.
- Les pyranomètres permettent d’accéder à une mesure intégrée en longueur d’onde sur différents intervalles qui procure une information sur l’énergie reçue par les végétaux mais aussi sur les pollutions chroniques auxquelles les pays industrialisés sont confrontés.
Aussi, nous sommes largement appesantis sur les mesures sol dans ce chapitre avant de poursuivre sur l’exploitation des données et sur la prévision. Il apparaît donc nécessaire de mentionner les moyens plus lourds dont dispose la météorologie en terme d’observation.

Les sondes de Teisserenc de Bort dont nous avons parlées dans les paragraphes précédents, sont devenues avec le développement des liaisons radio, des radiosondes: les données ne sont plus dépouillées \textit{a posteriori} mais transmises depuis la sonde et traitées numériquement en temps réel dans un calculateur. La localisation de la sonde par rapport à son point de décollage n’est maintenant plus assurée par méthode optique mais par une méthode de positionnement basée sur le système de positionnement satellitaire GPS. Le GPS permet également la mesure d’altitude et de pression, ce qui a conduit à la disparition des capsules anéroïdes. Les progrès de la chimie macromoléculaire au niveau de la résistance mécanique des élastomères ont permis également d’optimiser les aérostats porteurs des sondes. En effet, les radiosondes modernes dépassent les limites de la troposphère et fournissent des informations sur la stratosphère.

La figure 13 montre une radiosonde moderne dont la taille est maintenant réduite à celle d’une « brique de lait » d’un litre.

![Figure 13 : Radiosonde moderne à positionnement GPS](image)

L’autre système est le radar météorologique qui permet de détecter à méso échelle des phénomènes de précipitation ainsi que les fronts météorologiques. Ce système procure une grande finesse de mesure mais son coût d’achat et d’exploitation est très élevé et son fonctionnement requiert un personnel hautement qualifié.

Le troisième élément de cette panoplie lourde est le satellite qui se décline en deux types : les satellites géostationnaires tel METEOSAT (cf. figure 14) et les satellites défilants qui sont positionnés sur des orbites plus basses et fournissent une cartographie complète de la planète alors que les géostationnaires observent continuellement le même point du globe terrestre.
Les satellites fournissent des données sous forme d’image dans différentes bandes de longueur d’onde (visible, infrarouge thermique, vapeur d’eau). Ces informations sont transmises à des stations de réception sol qui traitent ces données afin de les rendre exploitables par les structures opérationnelles de prévision.

I-3 La prévision météorologique

La puissance croissante des calculateurs et la conception notamment de calculateurs parallèles type « clusters » ont permis la mise en œuvre d’algorithmes de traitement de données extrêmement consommateurs de puissance de calcul (généralement plusieurs dizaines de processeurs montés en parallèle. En effet, les modèles actuels « consomment » des flots de données d’observation (données sol, radiosondages, satellites, radars, données synoptiques) effectuées non seulement sur le territoire français mais aussi sur les territoires des pays limitrophes. L’introduction de ces données requiert un temps de calcul de l’ordre de plusieurs heures qui limite donc la sortie des résultats en temps réel. C’est pourquoi les résultats de prévision sont effectués par petits incréments temporels. Il n’existe pas, aujourd’hui de modèle universel à notre connaissance. A partir d’un modèle, on effectue plusieurs itérations en ajoutant à chaque passage une perturbation. Le nombre de scénarios convergent vers une même situation permet de déterminer en x/5 (où x est le nombre de scénarios ayant conduit au même résultat) un indice de confiance.

I-4 Historique de l’observation nuageuse

L’observation des nuages n’a réellement commencé qu’au début du XIX siècle, avec en 1802 une première classification des nuages établie par le naturaliste LAMARCK. En 1803, un autre naturaliste, Luke HOWARD a repris les travaux précédents et jeta les bases de la classification actuelle. En 1887, le suédois HILDEBRANSSON (directeur de l’Observatoire d’Uppsala, Suède) rédigea un ouvrage joignant des photographies aux définitions posées par HOWARD.
En 1896, le baron Léon Teisserenc de Bort rédigea le premier atlas international des nuages qui a bénéficié depuis cette date de plusieurs rééditions, mais qui reste toujours valide de nos jours.
Avant de rentrer dans la physique nuageuse, il est intéressant de s’arrêter quelques instants sur quelques définitions historiques des nuages qui montrent d’une manière claire l’aspect estimatif jusqu’à présent de l’observation nuageuse, selon Teisserenc de Bort.

Cirrus (Ci)

En forme de filaments blancs et délicats ou de bancs ou de bandes étroites, blancs ou en majeure partie blanc. Ces nuages ont un aspect fibreux (chevelu) ou un éclat soyeux ou les deux.

Cumulus (Cu)

Nuages séparés généralement denses et avec des contours bien délimités, se développent verticalement en forme de mamelons, de dômes ou de tour, dont la région supérieure bourgeonnante ressemble souvent à un chou-fleur.

Cumulonimbus (Cb)

Nuage dense et puissant, à extension verticale considérable, en forme de montagne ou d’énorme tour. Une partie au moins de sa région supérieure est généralement lisse, fibreuse ou striée et presque toujours aplatie; cette partie s’étale souvent en forme d’enclume ou de vaste panache.
Chapitre 2
Physique des nuages
I- Définition

Avant d’aller plus avant dans la physique nuageuse, il apparaît judicieux de fournir l’une des différentes définitions des nuages :

Un nuage est un agrégat visible de fines gouttelettes d’eau et/ou de cristaux de glace suspendus dans l’atmosphère. Il peut exister avec une large gamme de formes et de tailles. Certains nuages peuvent provoquer des précipitations : pluie, neige, grêle et même pluies verglaçantes.

Les nuages ont des formes variées que l’on peut observer à l’œil nu. Ils répondent à deux types de processus de génération qui permettent la création de nuages actifs ou passifs également baptisés selon les écoles, précipitants et non précipitants.

II- Développement des nuages

II-1 Développement actif de type cumuliforme

Les nuages cumuliformes se forment dans une masse d’air instable, humide comportant des noyaux de condensation (aérosols, cristaux de sel, …). Ceux-ci sont dynamiquement actifs dans le sens où des forces convectives commandent leurs croissances verticales. Ils peuvent ainsi continuer à croître et à évoluer.

Figure 15 : Nuages de type cumulus.

Sur un diagramme thermique, le sommet du nuage représente le lieu où la convection s’arrête et où sa flottabilité devient nulle.
II-2 Développement passif de type stratiforme.

Nuages en couche, ils ressemblent à des feuilles ou à des couvertures s’étendant sur des très grandes surfaces. Les nuages le long des fronts chauds sont typiquement stratiformes, incluant cirrus, cirrostratus, cirrocumulus, altostratus, altocumulus, stratus et nimbostratus.

Figure 17 : Exemple de Cirrus.

Les nuages stratiformes listés ci-dessus ne sont pas couplés de manière convective avec le sol en dessous d’eux. De tels nuages sont formés par mélange de masses d’air possédant des
températures et des humidités relatives différentes. Les centres de ces masses d’air peuvent être distants jusqu’à plusieurs centaines de kilomètres.

Figure 18 : Exemple d’altostratus

Les cirrostratus et les altostratus ont un aspect particulièrement lisse au regard, ce qui implique peu ou pas de turbulence à l’intérieur de ces derniers. Les nuages de type cirrocumulus et les altocumulus sont morcelés, mais les morceaux sont de petite taille. Nous déduisons de cette fragmentation en petits morceaux que les turbulences qui en sont la source se produisent à l’intérieur de la couche nuageuse et ne sont pas associées à des ascendance puissantes depuis le sol. En dépit de leur aspect fragmentaire, les cirrocumulus et les altocumulus sont formés de manière primaire par advection (arrivée et mélange d’une masse d’air dans une autre) et sont des couches nuageuses passives.

Figure 19 Exemple de nimbostratus
Les stratus sont, quant à eux, constitués de couches nuageuses épaisses et lisses se trouvant à basse altitude (<2000 m), mais ce type de nuage n’est pas non plus turbulent et couplé avec la surface inférieure. Les nuages de type nimbostratus sont suffisamment épais pour permettre la formation de bruine ou de pluie et des précipitations.

Figure 20 : Exemple de cirrocumulus

Les autres nuages dynamiquement passifs sont les nuages couvrant le sommet des montagnes et les nuages lenticulaires sous le vent des montagnes. Ceux-ci sont causés par un conflit entre des ascendants créées par les pentes, et le vent horizontal dans les couches les plus hautes.

II-3 Les stratocumulus

Les nuages de type stratocumulus sont quelque part différents des nuages soit actifs soit passifs. En effet, ils sont différents des nuages passifs, car ils peuvent être formés par des ascendants issues de la surface et différents des nuages actifs, ces ascendants ne sont souvent pas causées par flottabilité mais par des turbulences issues de cisaillements de vent. Dans l’atmosphère réelle, il y a souvent des phénomènes de flottabilité et de cisaillement qui ensemble, contribuent à une ascendance depuis la base des nuages de type stratocumulus. Également les rayonnements infrarouges émis vers le haut par le sommet des nuages peuvent refroidir la partie supérieure du nuage créant ainsi des domaines d’air froid qui se déplacent.
pour des raisons thermiques du haut vers le bas. La circulation turbulente qui en résulte, peut contribuer à l’aspect fragmenté des couches de stratocumulus.

Figure 21 : Exemple de stratocumulus

II-4 Taille des nuages

Un nuage cumuliforme a typiquement un diamètre approximativement égal à son épaisseur, comme nous l’avons mentionné précédemment. De plus, un nuage de type cumulus par beau temps a une dimension de l’ordre d’un kilomètre alors qu’en condition d’orage ses dimensions pourront atteindre dix kilomètres. Tous les nuages ne sont pas créés de manière équivalente. A un instant donné le ciel contient un spectre de taille de nuages qui a une distribution logarithmique normalisée (Stull et al. – 2000). Cette formulation possède une validité en latitude moyenne.

\[f(X) = \frac{\Delta X}{(2\pi)^{1/2} X S_x} \exp\left[-0.5 \left(\frac{\ln(X/L_x)}{S_x}\right)^2\right] \]

Equation (1)

Où \(X \) est soit le diamètre du nuage dans le plan horizontal soit l’épaisseur, \(\Delta X \) est une petite gamme de tailles de nuages, \(f(X) \) est la fraction de nuages de tailles entre \(X-0.5\Delta X \) et \(X+0.5\Delta X \), \(L_x \) est un paramètre de localisation et \(S_x \) un paramètre de dispersion sans dimension. Ces paramètres varient largement en fonction du temps et de la localisation.

Conformément à cette distribution, il y a beaucoup de nuages qui ont quasiment le même diamètre, mais il y a également quelques nuages qui ont un diamètre beaucoup plus important ; comme le montre la distribution dissymétrique sur la figure 22.
II-5 Modèle descriptif des nuages.

II-5-1 Introduction.

Pour décrire les nuages il est nécessaire de considérer les paramètres suivants :

- type de nuage,
- altitude du nuage et épaisseur (bas et sommet du nuage),
- extension horizontale,
- rapport de mélange (liquide/solide),
- contenu en eau liquide, et
- distribution des tailles des gouttelettes et des cristaux de glace.

Pour des raisons simplificatrices, nous considérerons ici uniquement des nuages contenant de l’eau liquide avec une large extension verticale permettant de les traiter comme des couches homogènes dans le cadre d’un modèle plan parallèle. Les nuages contenant des cristaux de glace possèdent des propriétés de réflexion complexe du fait de la géométrie de basse symétrie des cristaux.

Ici nous allons présenter un certain nombre de modèles de nuages résumés par Silverman et al. (1970) et évalués par Falcone et al. (1979). Ces modèles ont été basés sur un grand nombre de mesures embarquées :
- altostratus.
- stratus I.
- stratus II.
- stratus-stratocumulus.
- stratocumulus I.
- stratocumulus II.
- cumulus.
- cumulus-cumulus congestus.
- nimbostratus I.
- nimbostratus II.

Leurs distributions de taille et de propriétés optiques vont être décrites ci après.

II-5-2 Distributions de tailles de particules constitutives des nuages.

La distribution de taille de particules est un facteur très important pour déterminer les caractéristiques optiques des nuages. Les nuages d’eau consistent dans un large nombre de petites particules d’eau sphériques dont les diamètres peuvent varier de 0.01 à 100 µm. Selon Deirmendjian (1969), Les distributions de tailles de goutte pour différents types de nuages d’eau peuvent être représentées par une distribution Gamma modifiée :

\[n(r) = ar^\beta \exp(-br^\gamma) \]

(équation 2)

où \(n(r) \) est le nombre de particules de rayon \(r \). Les trois paramètres de distribution \(\beta, b \) et \(\gamma \) ont été déterminés par ajustement de données expérimentales. Le paramètre \(a \) est en relation avec \(N_0 \) le nombre de particules par unité de volume. Le tableau 1 présente les caractéristiques des dix modèles de nuage et la figure 23 présente quelques représentations graphiques de distributions de tailles de particules.

<table>
<thead>
<tr>
<th>Type de nuage</th>
<th>Numéro du modèle</th>
<th>(\beta) ((\mu m^{-1}))</th>
<th>(a)</th>
<th>(N_0) ((cm^{-3}))</th>
<th>(M) ((g.m^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altostratus</td>
<td>1</td>
<td>5</td>
<td>1.11</td>
<td>6.268</td>
<td>400</td>
</tr>
<tr>
<td>Stratus I</td>
<td>2</td>
<td>3</td>
<td>0.667</td>
<td>8.247</td>
<td>250</td>
</tr>
<tr>
<td>Stratus II</td>
<td>3</td>
<td>2</td>
<td>0.6</td>
<td>27.00</td>
<td>250</td>
</tr>
<tr>
<td>Stratus - Stratocumulus</td>
<td>4</td>
<td>2</td>
<td>0.75</td>
<td>52.734</td>
<td>250</td>
</tr>
<tr>
<td>Stratocumulus I</td>
<td>5</td>
<td>5</td>
<td>0.8</td>
<td>0.4369</td>
<td>200</td>
</tr>
<tr>
<td>Stratocumulus II</td>
<td>6</td>
<td>2</td>
<td>0.50</td>
<td>9.375</td>
<td>150</td>
</tr>
<tr>
<td>Cumulus</td>
<td>7</td>
<td>3</td>
<td>0.5</td>
<td>2.604</td>
<td>250</td>
</tr>
<tr>
<td>Cumulus – Cumulus congestus</td>
<td>8</td>
<td>2</td>
<td>0.328</td>
<td>1.4115</td>
<td>80</td>
</tr>
<tr>
<td>Nimbostratus I</td>
<td>9</td>
<td>2</td>
<td>0.425</td>
<td>7.676</td>
<td>200</td>
</tr>
<tr>
<td>Nimbostratus II</td>
<td>10</td>
<td>1</td>
<td>0.333</td>
<td>11.089</td>
<td>100</td>
</tr>
</tbody>
</table>

Tableau 1 : Caractéristiques paramétriques des dix modèles de nuages (selon Falcone et al-1979) ? est considéré comme étant égal à 1.
Figure 23 : Représentation graphique des distributions de tailles de particules composant les nuages.

Ces considérations théoriques étant établies, il est nécessaire maintenant de réaliser un inventaire des techniques de mesure de la distribution spatiale des nuages à des fins de prévision météorologique et de quantification du potentiel de précipitation de la couche stratosphérique.
Chapitre 3
Méthodes expérimentales de mesure de la couverture nuageuse.
I – Introduction

Le contenu de ce mémoire est orienté vers les méthodes de mesure à micro échelle. Il ne faut pas voir à travers cela un quelconque mépris à l’égard des technologies satellites et radar qui s’appliquent à la macro et à la méso météorologie car une connaissance de l’atmosphère et une prévision météorologique fiabilisée passera par la complémentarité des mesures aux différentes échelles procurant ainsi une analyse « par dessus » « par dessous » de l’atmosphère.

Avant de venir aux méthodes de mesure de la couverture nuageuse, il apparaît nécessaire de s’arrêter quelques instants sur les motivations à réaliser ces mesures.

- **Modélisation de données météorologiques** : comme nous avons pu le voir au chapitre 2, la présence ou non de nuages peut fournir des informations sur la présence de fronts météorologiques. Ils sont des éléments clef pour les modèles et les prévisions induites. Ces données doivent être obtenues de jour comme de nuit avec des mesures environ tous les quarts d’heure.

- **Modélisation des pollutions accidentelles et chroniques** : notre civilisation industrielle a amené à prendre en compte ce paramètre de plus en plus. La dispersion des polluants va largement dépendre de la stabilité atmosphérique baptisée par les modélistes (Pasquill, Doury) « Classes de stabilité ». Cette grandeur peut être obtenue par diverses méthodes mais la plus prise reste la couverture nuageuse qui doit être mesurée au plus près du terme source de la pollution et avec un intervalle d’échantillonnage de l’ordre de quelques minutes. Au voisinage des complexes industriels travaillant de jour comme de nuit, les données de couverture nuageuse doivent être disponibles en continu.

- **Activités aéronautiques** : les activités aéronautiques commerciales sont gérées en matière de sécurité par les règles de l’OACI (Organisation de l’Aviation Civile Internationale) qui prescrivent pour les « clearance » d’atterrissage et de décollage des règles extrêmement drastiques quant à la nébulosité dans l’axe de piste de jour comme de nuit, en matière de visibilité RVR (Runway Visual Range), hauteur de base des nuages, type de nuage et nébulosité. Les exploitants de ces infrastructures aéroportuaires sont également soumis à d’autres contingences d’ordre économique à savoir que l’OACI leur demande de se préoccuper de la nébulosité à l’instant t du décollage ou de l’atterrissage mais des contingences impliquent qu’en toute sécurité, ils doivent faire atterrir et décoller un maximum d’appareils ce qui signifie en matière de couverture nuageuse qu’ils doivent, connaître en dehors des axes de piste, la présence de formations nuageuses et la dynamique de ces dernières. Tous ces aspects doivent être fournis aux contrôleurs aériens de jour comme de nuit. Un autre facteur à prendre en compte est la présence de turbulences lors des phases critiques de l’atterrissage et du décollage des appareils.

- **Sécurité solaire** : le développement des loisirs a entamé depuis plus de deux décennies une plus grande exposition des personnes aux rayonnements solaires ce qui a induit un accroissement du vieillissement des tissus et des mélanomes. Pour répondre à ce besoin de protection naissant, l’industrie des cosmétiques a développé des gammes de produits très larges mais dont l’efficacité est assujettie aux fréquences d’application sur la peau, aux types de peau et à l’environnement. Ces produits possèdent une tendance hydrophile certaine. Les activités aquatiques détruisent les films protecteurs. Comme nous avons pu le voir dans le chapitre I, la météorologie a d’abord consisté en des observations humaines qui, pour les nuages, continuent à perdurer de nos jours.
Les modélistes ont permis une très bonne approche de ce risque radiatif par ciel clair (absence totale de nuage) et avec une couverture nuageuse totale. Par contre leur action est limitée en situation dite de « nuages fractionnés » par un manque d’information sur la distribution spatiale des nuages au dessus du lieu considéré. Ces phénomènes se produisent de jour mais dans le cadre d’un aspect prédictif des mesures réalisées de manière quart horaire durant les dernières heures de nuit peut fournir des informations cruciales sur une tendance de couverture nuageuse.

Figure 24 : Parc météorologique sur l’aéroport international d’Hong-Kong.

- **Etat de surface des routes et autoroutes** : dans notre société européenne, le transport des marchandises s’effectue de manière majoritaire par la route. Les volumes des camions s’accroissent ce qui les expose au niveau météorologique à deux dangers que sont le vent mais aussi l’état de la chaussée. Les exploitants de ces voies de circulation sont soumis à des problématiques de décisions de traitement préventif (chasse neige, salage) ou de régulation de trafic (réduction de vitesse, ouverture d’itinéraire de délestage, pollution atmosphérique). La thermique des revêtements de chaussée a été largement étudiée mais ces calculs requièrent des informations sur les sources d’énergie et dans le cadre du couplage avec l’atmosphère. Par exemple de jour, une absence de couverture nuageuse, le rayonnement solaire va pouvoir être capté par le revêtement et permettre un dégel ou un séchage de la chaussée. Ces paramètres traités par les modèles vont permettre aux exploitants d’agir avec fiabilité de manière préventive et non curative comme cela est trop souvent le cas actuellement.

- **Gestion des ressources en eau atmosphériques** : dans les pays du Moyen Orient, l’eau est une denrée extrêmement prisée. Les pays de la bande littoral se sont orientés depuis plusieurs décennies vers la désalinisation d’eau de mer qui s’avère très onéreuse aussi bien en investissement qu’en fonctionnement. C’est pourquoi différents programmes notamment aux Emirats Arabes Unis et au Maroc tendent à relancer le tir de fusées à l’iodure d’argent afin de générer des précipitations lorsque des nuages sont
présents, bien que cette technique soit très discutée et discutable. Ces fusées pour des considérations de sécurité mais aussi de coût ne peuvent être tirées de manière aléatoire et massive, c’est pourquoi il est utile, à l’échelle du rayon d’action de la rampe de lancement des fusées, de connaître la couverture nuageuse en temps réel. Là encore l’information de couverture nuageuse doit être disponible de jour comme de nuit.

II Observateurs humains

Historiquement, les instruments météorologiques requéraient du fait de leur lecture directe la présence d’observateurs météorologie. Le développement de l’électronique durant les trente dernières années a permis une automatisation de la mesure et la mise en place de stations dites automatiques. Du fait de l’absence d’instrumentation, la connaissance de la couverture nuageuse est restée cantonnée dans les « grandes stations » et est réalisée par l’observateur de permanence toutes les heures ou toutes les trois heures selon les offices de météorologie. La méthode est basée sur une observation visuelle uniquement qui vise à définir en huitième (baptisé Octa en météorologie) la surface du ciel couverte par les nuages dans son champ de vision ainsi que l’altitude de la première couche. Cela n’est pas sans créer des problèmes de précision selon l’acuité visuelle mais aussi de répétitivité entre les personnels.

Tous les experts s’accordent sur le fait que la fréquence des mesures de la couverture nuageuse est trop faible mais aussi sur le coût généré par cette mesure est important.

Dans les tableaux 2 et 3, on tente d’évaluer le coût d’un point de ce que l’on peut appeler d’estimation de la couverture nuageuse. Ces calculs ont été réalisés sur la base de la législation française et peuvent être facilement extrapolés aux autres pays de l’Union Européenne.

<table>
<thead>
<tr>
<th>Nombre d’heures de présence annuelle requises dans chaque station.</th>
<th>8760 heures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durée annuelle travaillée sur la base hebdomadaire de 35 heures sans prise en compte de repos compensateur et des autres dispositions légales pour un observateur.</td>
<td>1645 heures</td>
</tr>
<tr>
<td>Nombre d’observateurs par station</td>
<td>6</td>
</tr>
</tbody>
</table>

Tableau 2 : Nombre d’observateurs requis pour une observation annuelle de la couverture nuageuse.

Salaire brut annuel estimé d’un observateur	22800 €
Charges sociales annuelles	9804 €
Frais généraux annuelles	6520 €
Nombre d’observateurs	6
TOTAL	**234744 €**

Ce coût ne doit pas être uniquement imputé à l’observation de la couverture nuageuse car entre les temps d’observation, chaque heure, les personnels peuvent être affectés à d’autres tâches.
Cette simple étude de coût n’a pas pour but de générer un « conflit social » ni de prétendre à l’inutilité des personnels d’observation. Mais il semble difficile de multiplier le nombre d’observateurs : il est alors nécessaire d’automatiser ce type de mesure. Les changements climatiques et l’extension des activités humaines accroissent le nombre de grandeurs mesurées. Les observateurs, à mon sens, vont devoir être affectés à une mission cruciale qui est la validation des valeurs observées par les processus automatiques. En effet, même les algorithmes les plus sophistiqués sont faillibles : l’être humain de par sa capacité d’analyse deviendra un moyen de contrôle et de validation non absolu malheureusement. On peut citer à titre d’exemple, la transmission le 29 Octobre 2003, par un capteur de temps présent le passage d’un « code neige » qui était dû à la présence dans l’axe d’un capteur optique d’une toile d’araignée. Il faut noter que ce jour là la température le matin était de +1°C ce qui vient renforcer la difficulté d’interprétation.

Ces considérations financières doivent être prises en compte avec sérénité en effet, une automatisation passe par un coût très inférieur à celui de l’observateur. Le coût de l’instrument peut atteindre près de 25000 Euros et s’avérer être un gain d’exploitation substantiel. A ce niveau, il faut mettre en place un distinguo entre les besoins dans les réseaux de mesure et les utilisations type aéroportuaires.

Dans les réseaux de mesure, il sera utile dans la conception de l’instrument d’inclure le besoin. Ce dernier est il d’automatiser les points d’observation actuels ou de massifier l’acquisition de ce paramètre en déployant l’instrument sur toutes les stations automatiques ? Ce qui impliquerait tout d’abord des prix de commercialisation très inférieurs c'est-à-dire de l’ordre de quatre à cinq mille Euros. Néanmoins, la massification de l’observation passe par le déploiement dans des sites isolés.

Pour les utilisations ponctuelles comme les aéroports, le raisonnement doit être différent. En effet, les besoins en matière de connaissance de la couverture nuageuse sont plus larges et doivent comprendre pour la prise de décision une interface homme machine développée. Avec le développement du transport aérien, les aéroports ont une taille de plus en plus importante et l’observation réalisée en un point peut s’avérer non représentative de la situation du fait de l’étendue du complexe aéroportuaire. La problématique sera identique pour un système automatique. Il faudra parfois envisager la connexion de plusieurs instruments et les observations interpolées pourront créer une image globale.

III Ceilomètre – Algorithme ASOS

Depuis environ deux décennies, Météorologie France utilise les qualités du rayonnement laser pour effectuer des mesures de hauteur des nuages. Les nuages réfléchissent le rayonnement laser. L’instrument permettant cette mesure est baptisé télémètre laser nuage (TNL) ou plus communément au niveau international « ceilomètre ». Les TNL fournissent ponctuellement du fait de la finesse du faisceau laser l’altitude de base des trois premières couches nuageuses et ce jusqu’à une altitude d’environ 8000 m pour les instruments de dernière génération selon les données constructeurs. Des essais en comparaison avec un système d’éclairement ont été réalisés par Météorologie France et ont permis d’établir une validation jusqu’à 1500 m. D’autres travaux réalisés dans le cadre du programme ARM de l’USDOE (US Department of Energy) ont permis une validation également jusqu’à 5000 m en comparant les mesures ceilométriques par rapport à des mesures radar. La préoccupation d’automatiser la mesure de la couverture nuageuse n’est pas récente, c’est pour cette raison que l’algorithme ASOS
(Automated Surface Observing System) basé sur la réalisation de séries temporelles a été créé.

Le calcul du taux de couverture nuageuse f qui s’effectue couche par couche est basé sur le calcul suivant :

$$f = \frac{\sum(\text{tir avec présence nuage dans la couche})}{\sum(\text{nombre total de tirs})}$$ (Equation 3)

Les tirs sont usuellement réalisés toutes les 5 secondes et la nébulosité (communément exprimée en Octa soit par tranche de 12,5 %) est calculée toutes les 5 minutes ou toutes les minutes. Un exemple est présenté sur la figure 25. Le vocable Néphélo présent sur cette représentation graphique désigne le nom initial de notre instrument. Ces résultats de notre technique infrarouge sont fournis à titre indicatif et seront commentés ultérieurement dans le manuscrit. Le changement a été nécessaire du fait de la confusion générée avec les instruments de mesure de taille des particules d’aérosol.

![Figure 25](image.png)

Figure 25 : Evolution de la nébulosité obtenue par l’algorithme ASOS en fonction du temps.

Les couvertures nuageuses comme on peut les observer simplement en regardant le ciel sont totalement anisotropes et une série de mesures ponctuelles ne fournira qu’une description linéaire de la couverture nuageuse. C’est pourquoi bon nombre d’offices météorologiques dont le « US National Weather Service » (initiateur de la méthode) a décidé de multiplier le nombre de ceilomètre afin de moyennier les mesures ou d’en estimer la représentativité.

IV Radiosondes – Méthode de Chernyik Elskridge.

Cette méthode permet de déterminer les altitudes de base et de sommet des nuages et par voie de conséquence leurs épaisseurs.
La prévision météorologique requiert une connaissance verticale de la vitesse et de la direction du vent mais aussi de la température de l’air, de l’humidité relative et de la pression barométrique. Pour des raisons de coût et d’infrastructure, le nombre de positions de lancement de radiosondes est limité par pays à moins d’une dizaine et le nombre de lancement est défini selon les recommandations de l’Office Météorologique Mondial à une sonde toutes les 12 heures. Chaque sonde permet à terme (durée de vol environ une heure) d’obtenir des profils. Sur les figures 26, 27 et 28 sont présentés respectivement, des profils de pression, de température et d’humidité relative obtenus par une sonde lancée depuis le site Météorologie France de Trappes (78).

Du fait du déplacement horizontal de la sonde (vent), les mesures verticales réalisées par une radiosonde ont une validité dans un cylindre vertical de rayon 5 kilomètres.

![Graphique](image)

Figure 26 : Evolution de la pression barométrique en fonction de l’altitude.
Figure 27 : Evolution de la température en fonction de l’altitude.

Figure 28 : Evolution de l’humidité relative en fonction de l’altitude.
La méthode de Cherny Elskridge (1996/2001) est une exploitation a posteriori des données d’un vol de radiosonde. Cette méthode se base sur la concordance de deux points d’inflexion entre les profils de température et d’humidité relative en fonction de l’altitude avec les équations suivantes.

\[
\begin{align*}
\cdot & \quad d^2T(h)/dh^2 \geq 0 \quad \text{(Equation 4)} \\
\cdot & \quad d^2HR(h)/dh^2 \leq 0 \quad \text{(Equation 5)}
\end{align*}
\]

Pour appliquer ces formules à des données de radiosondage, il est nécessaire d’interpoler les données tous les 300 m. Cet intervalle résultant de différents essais apparaît important mais il correspond à une variation suffisante de la température et de l’humidité relative. Une fois ces calculs de différentiel effectués une interpolation du troisième ordre (spline) tous les 50 m est appliquée sur les valeurs obtenues afin d’optimiser la précision de la détermination de la base et du sommet de la couverture nuageuse.

L’application de cette fonction « spline » ne peut pas être physiquement justifiée mais elle représente un moyen simple d’optimiser la mesure de l’épaisseur des couches. Il serait intéressant d’exploiter en parallèle des sondages haute et basse résolution simultanés afin d’en vérifier la validité. Malheureusement, ces sondages dont le coût est significatif, ne sont que très rarement utilisés par les Offices météorologiques Nationaux.

Pour chaque sondage, seules les six premières couches ont été retenues.

Cette méthode ponctuelle décrit la couche nuageuse à l’endroit où la radiosonde la traverse.

Cette méthode pour l’intensité des couches est complétée par le diagramme d’Arabey (1975). À l’origine, le résultat de ce travail n’avait été présenté que sous forme d’un abaque. Le traitement numérique a obligé à une définition analytique des zones frontières qui sont présentées ci-après.

Dans son diagramme variation de la température du point de rosée (dTd) en fonction de la température, Arabey définit quatre zones d’intensité de couverture nuageuse :

- zone 1 : de 0 à 20 %,
- zone 2 : de 20 à 60 %,
- zone 3 : de 60 à 80 %, et
- zone 4 : de 80 à 100 %.

Ce diagramme peut également être segmenté en trois zones de température :

- de –80°C à –10°C,
- de –10°C à 0°C, et
- de 0°C à +40°C.

Les séparations entre les différentes zones du diagramme sont linéaires. Les différentes équations sont reprises dans le tableau suivant :
Tableau 4 : Equations paramétriques des zones du diagramme d’Arabey.

Ces formes analytiques ont été transcrites sous forme graphique sur la figure 29. Il est utile de noter que dans les travaux d’origine le diagramme était considéré comme un abaque.

<table>
<thead>
<tr>
<th>Zone de température</th>
<th>Séparation zone1/zone 2</th>
<th>Séparation zone2/zone 3</th>
<th>Séparation zone3/zone 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>de -80°C à -10°C</td>
<td>$dTd=-0.1*T$</td>
<td>$dTd=-0.124*T+1.36$</td>
<td>$dTd=-0.15*T+2.5$</td>
</tr>
<tr>
<td>de -10°C à 0°C</td>
<td>$dTd=-0.007*T+0.6$</td>
<td>$dTd=-0.06*T+2$</td>
<td>$dTd=-0.1*T+3$</td>
</tr>
<tr>
<td>de 0°C à +40°C</td>
<td>$dTd=0.6$</td>
<td>$dTd=2$</td>
<td>$dTd=3$</td>
</tr>
</tbody>
</table>

Figure 29 : Reconstitution du diagramme d’Arabey.

Afin de présenter ces deux méthodes, deux sondages réalisés sur le site Météo France de Trappes avec des sondes standard ont été retenus :

Le 15/5/01 à 12h00 sondage n°66691.
Le 27/5/01 à 0h00 sondage n°66716.

Il est utile de noter que sur le site de Trappes et de manière générale dans les stations du réseau d’observation mondial, la fréquence des sondages est de deux par jour (0h00 et 12h00).

Les fichiers de données brutes au format météorologie France « Star » ont été traités et interpolés par le logiciel « INTERRS » dont une version nous a été mise à disposition gracieusement par Météorologie France. Le pas d’interpolation a été fixé à 50 m. L’utilisation de sondes haute résolution permettrait vraisemblablement l’optimisation de la précision des calculs.

Les résultats de nébulosité sont présentés sur les figures 30 et 31 selon la méthode d’Arabey. Les résultats numériques de la méthode de Chernyk-Elskridge sont quant à eux placés à la suite des figures. Afin d’évaluer la validité de la méthode de Chernyk Elskridge une
comparaison d’une part avec les (mêmes) données ceilométriques de première couche de la journée du 17/05/01 a été réalisée pour les deux sondages de 0h00 et 12h00 de la même journée (Figure 32) et d’autre part pour le 02/06/01 avec le sondage de 12h00 (Figure 33).

Figure 30 : Evolution de l’indice d’Arabey en fonction de l’altitude le 15/05/01 à 12h00

- Résultats de la méthode de Chernyk Elskridge pour le 15/05/01 à 12h00

 Couche n°1 de 50 m à 150 m
 Couche n°2 de 800 m à 1100 m
 Couche n°3 de 1450 m à 1900 m
 Couche n°4 de 2400 m à 2800 m
 Couche n°5 de 3100 m à 3150 m
 Couche n°6 de 3850 m à 4050 m
Figure 31 : Evolution de l’indice d’Arabey en fonction de l’altitude le 27/05/01 à 0h00

Résultats de la méthode de Chernyk Elskridge pour le 27/05/2001 à 0h00

Couche n°1 de 1300 m à 1650
Couche n°2 de 2950 m à 3450
Couche n°3 de 4200 m à 4400
Couche n°4 de 4600 m à 4850
Couche n°5 de 5350 m à 5650
Couche n°6 de 6350 m à 6800

Le diagramme d’Arabey présenté ci-dessus, fournit, comme évoqué précédemment, les informations de nébulosité en fonction de l’altitude pour ce sondage. Les altitudes limites des couches ont été estimées par les équations de Chernyk Elskridge (Équations 4 et 5).

Les figures ci après montrent une comparaison entre la méthode de Chernyk Elskridge et des mesures ceilométriques :
Cette méthode permet de définir des intervalles d’altitude s’étendant pour chaque diagramme de B à H. Les points indiquent les valeurs d’altitude de première couche nuageuse.
enregistrées à l'aide d'un ceilomètre. Pour la figure 32, on constate que les nuages identifiés par le ceilomètre se trouvent dans la seconde zone de Chernyk Elkridge issue des deux sondages. Ceci tend à montrer que cette méthode défini une condition thermodynamique de potentialité de nuage mais que d’autres phénomènes tels les noyaux de condensation sont indispensables à la genèse du nuage.

Un autre exemple de traitement est présenté sur la figure 33 pour le 02/06/01. Au contraire du cas précédent les nuages détectés par le ceilomètre se trouvent en première zone de Chernyk Elskridge, dénommée sur la figure ci-dessous zone 1.

Figure 33 : Comparaison Ceilomètre/Méthode de Chernyk-Elksridge le 02/06/01.

Conclusion :

Considérant la complexité géométrique des couches nuageuses, les deux méthodes tendent à converger mais les différences observées demeurent supérieures à l’incertitude de mesure. Alors, il sera nécessaire, tout d’abord, d’établir la validité temporelle de chaque sondage, ensuite d’examiner en détail les domaines de Chernyk-Elskridge qui possèdent très certainement des parois d’épaisseur non nulle dans lesquelles des nuages seraient susceptibles de pouvoir se former. Il faudra aussi évoquer des inversions passagères de température comme des sources possibles de déplacement des couches de Chernyk-Elskridge.

Cette méthode possède un intérêt indiscutable pour les exploitations sur les tendances climatologiques sur plusieurs années mais dans un aspect « temps réel », sa lourdeur et son manque de fréquence (1 donnée par tranche de 12h00) la rendent caduque dans le cadre de ce projet.
V-1 Introduction

Depuis plus d’une décennie, différentes équipes de recherche ont lancé des programmes de développement de systèmes d’imagerie nuageuse (Gaumet et al. - Gardiner et al. - Long et al.). Ces systèmes basés sur des mesures de température ou photographiques n’ont pas été industrialisés à l’exception du projet de Charles Long qui a été industrialisé par Yankee Environmental Systems et baptisé Total Sky Imager (TSI). L’instrument déployé sur le site de l’Institut d’Aéronomie Spatiale de Belgique est présenté sur la figure 34. Parmi les instruments de recherche non industrialisés, figure le WSI (Whole Sky Imager) qui fournit des mesures de jour par méthode photographique et de nuit par mesure d’occultation de plusieurs centaines d’étoiles dont leurs positions ont été repérées avec précision. L’ensemble des ces instruments est présenté dans le chapitre 7.

V-2 Cas du Total Sky Imager

L’objectif initial de Long et de son équipe était en complément du programme de suivi du rayonnement ultraviolet A et B de connaître la distribution spatiale nuageuse et ce afin de réaliser des calculs de transfert radiatif dans la zone de mesure.

Figure 34 : Total Sky Imager 440 déployé sur le site de l’Institut d’Aéronomie Spatiale de Belgique, Bruxelles, Belgique.
Le Total Sky Imager est un système d’imagerie couleur du ciel totalement automatique qui fournit durant la période diurne, à travers un traitement temps réel, des images relatives à l’état de nébulosité du ciel. À l’aide d’un logiciel externe ou d’un processeur embarqué selon les modèles, les TSI fournissent des données calculées sur le taux de couverture nuageuse et la durée d’ensoleillement.

Les images du ciel sont capturées via une caméra CCD pointée vers un miroir semi-sphérique tournant et réchauffé. Une bande d’occultation solaire sur le miroir bloque le rayonnement solaire direct afin de protéger la caméra CCD des surexpositions. Les images brutes et retraitées sont affichées sur le PC dédié ou sur des PC distants par liaison de type TCP/IP.

Les TSI sont des imageurs de nuage diurne. Une fois que le soleil atteint une certaine valeur d’angle d’élévation dans le ciel définie par l’utilisateur, l’acquisition des images commence. Le traitement masque d’abord les obstructions aux environs de l’instrument (bâtiments, arbres …) ainsi que le bras de support de la caméra et la bande d’occultation solaire. La fraction de couverture nuageuse est alors déterminée par une analyse du rapport énergétique du bleu sur le rouge. Ces instruments peuvent être configurés pour fonctionner seuls ou en réseau. Dans le mode de fonctionnement isolé, ils peuvent être interfacés directement à des systèmes météorologiques de surface via l’interface série RS232 mais également mis en ligne sur Internet via l’interface modem téléphonique ou réseau 10/100-Base T. En réseau, les utilisateurs peuvent obtenir les images retraitées en temps réel ou à distance via un navigateur Web.

Sur la figure 35 une image brute (gauche) et retraitée (droite) sont présentées.

Figure 35 : Images brute et retraitée par le Total Sky Imager.
Chapitre 4
Cahier des charges scientifique, technique et marketing.
I- Introduction

Le chapitre précédent a permis de réaliser un état de l’art non exhaustif en matière de mesure ou d’évaluation de la couverture nuageuse. On a pu aussi approcher les besoins pour une large gamme d’utilisateurs et d’utilisation. Ces données sont résumées dans le tableau 5. Les types d’utilisation ont été répartis en quatre catégories :

- Aéroports civils et militaires.
- Stations « habitées » de réseaux de mesure (réseau qualité de l’air, « offices de météorologie »).
- Stations isolées de réseaux de mesure (réseau qualité de l’air, « offices de météorologie », exploitation autoroutière).
- Utilisation laboratoire de recherche (campagnes de mesure).

<table>
<thead>
<tr>
<th></th>
<th>Aéroports</th>
<th>Stations habitées</th>
<th>Stations isolées</th>
<th>Campagnes de mesure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesures diurnes</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Mesures nocturnes</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Imagerie</td>
<td>?</td>
<td>?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nébulosité</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Dynamique nuageuse</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Distance entre nuage et point d’observation</td>
<td>?</td>
<td>?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alimentation panneau solaire</td>
<td></td>
<td></td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Transmission par ligne série de données de nébulosité et de plafond</td>
<td></td>
<td></td>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>

Tableau 5 : Définition des fonctionnalités en fonction des grandes typologies d’utilisation

Ce tableau montre en fait que deux types d’instruments seraient nécessaires. Le nombre de stations sur sites isolés est plus important mais la maîtrise de cet axe novateur qu’est
l’imagerie nuageuse depuis le sol a impliqué une orientation vers le développement de l’instrument avec l’intégralité des fonctionnalités. En effet, la maîtrise de tous les paramètres permettra plus facilement la mise au point d’une version « dégradée » orientée vers les sites isolés.

II-Principe de mesure.

II-1 Généralités

Le choix du principe de mesure est conduit par le fait que l’instrument doit fournir des données de jour comme de nuit. Les satellites travaillent en pointant le sol et utilisent la rétro-diffusion de l’énergie solaire dans certaines longueurs d’onde (spectroscopie par réflexion). De nuit, leur fonctionnement est basé sur une spectroscopie d’absorption de l’énergie réémise par la terre dans la bande des 3.5 µm. Dans notre cas, l’instrument est orienté vers le ciel. De jour, le rayonnement solaire dans le visible peut être utilisé mais la nuit les capteurs seront muets dans la mesure où les émissions stellaires sont trop faibles et trop ponctuelles pour être utilisées. Pour ces raisons, le capteur effectue ses mesures vers l’infrarouge thermique 9-14 µm dont l’utilisation pour la mesure nuageuse a déjà été mise en évidence par certains auteurs tels Gaumet et al. Le principe de mesure est illustré sur la figure 36.

![Figure 36 : Principe physique retenu pour l’instrument](image)

Ce principe physique est exprimé par la loi de Stefan-Boltzmann :

\[E = \varepsilon \sigma T^4 \]
(Equation 6)
Où
- E est l’énergie en W/m²,
- e est l’émissivité de la formation nuageuse se trouvant dans le champ de vision de l’instrument. Nous reviendrons ultérieurement sur ce paramètre,
- s est la constante de Stefan Boltzmann égale à 5.67*10⁻⁸ W.m⁻².K⁻⁴, et
- T est la température de brillance de la surface visée exprimée en Kelvin.

II-2 Application à la troposphère

La troposphère est la couche de l’atmosphère la plus perturbée et celle qui nous concerne le plus dans la mesure où nous y évoluons. Une preuve en est les difficultés rencontrées par les prévisionnistes à prévoir le temps. La température décroît avec l’altitude, les perturbations induisent des accidents baptisés inversions de température. Le profil de température troposphérique peut être assimilé à un milieu adiabatique avec une évolution de température sigmoïdale comme le montre la figure 37.

L’hypothèse clef du projet a été de considérer que la température issue de l’énergie infrarouge mesurée correspondait à celle de la base du nuage, ce qui permet de mesurer l’altitude du nuage (Figure 37).

Figure 37 : Profil de température adiabatique et positionnement nuageux.
II-3 Emissivité nuageuse

Comme nous l’avons présenté au Chapitre 2, les nuages sont composés de particules de tailles et de nature différentes. En fonction de la concentration des particules l’émissivité varie significativement. Pour l’air sec elle est de l’ordre de 0.01, pour les cirrus elle atteint 0.7 et pour les cumulus 0.96. Cette grandeur fondamentale de la mesure peut être obtenue de la manière suivante pour un nuage contenant une portion de phase solide et une portion de phase liquide :

\[\varepsilon = 1 - \exp(-D \, k_{abs} \, CWP) \]
(équation 7)

où \(D \) est un facteur de diffusivité posé comme étant égal à 1.66, \(k_{abs} \) est un facteur d’absorption d’ondes longues (m².g⁻¹) et CWP est la quantité de vapeur d’eau en g.m⁻². Le coefficient d’absorption est défini comme suit :

\[k_{abs} = k_l (1 - f_{glace}) + k_i f_{glace} \]
(équation 8)

Où \(k_l \) est le coefficient d’absorption d’onde longue pour la fraction liquide du nuage et a pour valeur de 0.090361, de manière à ce que \(Dk_l \) soit égal à 0.15. \(f_{glace} \) est la fraction de glace dans le nuage. \(k_i \) est le coefficient d’absorption pour la phase solide du nuage sur une bande large ajustée à l’émissivité donnée par la formulation de Ebert et Currie :

\[k_i = 0.005 + 1/r_{ei} \]
(équation 9)

où \(r_{ei} \) est le rayon moyen des particules de glace.

II-4 Instrumentation retenue

Les besoins de la conquête spatiale et le développement des mesures satellitaires ont permis le développement d’une technologie de CCD infrarouge de très haute qualité. Ces composants fonctionnent de manière nominale dans les basses températures du vide spatial mais doivent être refroidis avec des systèmes cryogéniques notamment à azote liquide. Sans prendre en compte les aspects financiers, un déploiement en station n’est pas envisageable. Ce fait est renforcé par le fait que le champ de vision de ces CCD est de l’ordre de quelques degrés ce qui implique pour l’instrument l’adjonction d’une lentille grand angle de type « fish eye » dans un matériau transparent aux infrarouges thermiques, de type KBr, SeGe…. La tendance hygroscopique des halogénures alcalins rend caduque leur utilisation pour un déploiement en extérieure.

La mesure de température sans contact utilisant l’émission infrarouge a été très largement développée pour les besoins de l’industrie notamment métallurgique et verrière au niveau des fours. Pour répondre à ces besoins, deux grandes familles de capteurs ont été créés :

51
- les réseaux bolométriques qui sont en fait un ensemble de thermopiles jointes pour former un pseudo CCD. Ces capteurs peuvent être placés à l’air libre. Cette voie a été explorée par le groupe de Joseph Shaw à l’Université du Montana avec des résultats intéressants malheureusement limités du fait de l’absence d’optique de type « Fish Eye » (Instrument ICI).

- les pyromètres qui sont des instruments indépendants possédant un angle d’ouverture d’une dizaine de degrés et fournissant une donnée de température en sortie. Ces appareils montés sur un support à un ou deux degrés de liberté permettent un balayage de la voûte nuageuse. Cette voie avait déjà été partiellement explorée par des auteurs tels que Gaumet et al.

Notre décision a été de lancer nos investigations sur la base du pyromètre, ces instruments étant largement utilisés dans l’industrie pour des mesures de température sans contact notamment sur les fours.

Nous avons plus particulièrement tout d’abord retenu l’un d’entre eux (référence OS65) fabriqué aux États-Unis par la société OMEGA dont les caractéristiques sont présentées dans le tableau 6.

<table>
<thead>
<tr>
<th>Caractéristiques</th>
<th>Valeurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bande spectrale</td>
<td>9-14 µm</td>
</tr>
<tr>
<td>Gamme de température</td>
<td>-57°C - +125°C</td>
</tr>
<tr>
<td>Précision sur la température</td>
<td>+/- 1°C</td>
</tr>
<tr>
<td>Répétitivité</td>
<td>+/- 1°C</td>
</tr>
<tr>
<td>Temps de réponse</td>
<td>300 ms</td>
</tr>
<tr>
<td>Champ de vision total</td>
<td>11.9 °</td>
</tr>
<tr>
<td>Sortie</td>
<td>0-5 VDC</td>
</tr>
<tr>
<td>Emissivité</td>
<td>Réglable par l’utilisateur de 0.1 à 0.99</td>
</tr>
</tbody>
</table>

Tableau 6 : Caractéristiques du pyromètre OMEGA

L’utilisation industrielle requiert une mise en retrait de la lentille afin d’éviter la capture de rayonnement infrarouge parasite latéral. En météorologie, nous n’avons pas à nous prémunir de ce phénomène par contre la mise en retrait de la lentille crée un réceptacle qui se remplit d’eau de pluie et qui a du être éliminé en revoyant totalement la conception mécanique. En effet, l’eau crée un obstacle à la mesure des infrarouges thermiques émis par les nuages. La température mesurée devient la température ambiante.

Les figures 38, 39 et 40 montrent respectivement la vue éclatée du capteur OMEGA à l’origine et la vue du capteur modifié.
Figure 38 : Vue éclatée du capteur OMEGA dans sa configuration d’origine.

Figure 39 : Vue éclatée du pyromètre OMEGA après modification pour application météorologique.
Dans la suite de l’étude, il a été nécessaire d’utiliser un second pyromètre fabriqué par la société EUROTRON équipé d’origine d’une lentille affleurante en Germanium traité et avec un angle restreint de +/- 2°. Les caractéristiques de ce second pyromètre sont décrites dans le tableau 7 et une vue du capteur est présentée sur la figure 41.

<table>
<thead>
<tr>
<th>Caractéristiques</th>
<th>Valeurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bande spectrale</td>
<td>9-14 µm</td>
</tr>
<tr>
<td>Gamme de température</td>
<td>-50°C - +100°C</td>
</tr>
<tr>
<td>Précision sur la température</td>
<td>+/- 1°C</td>
</tr>
<tr>
<td>Répétitivité</td>
<td>+/- 1°C</td>
</tr>
<tr>
<td>Temps de réponse</td>
<td>30 ms</td>
</tr>
<tr>
<td>Champ de vision total</td>
<td>4 °</td>
</tr>
<tr>
<td>Sortie</td>
<td>4-20 mA</td>
</tr>
<tr>
<td>Emissivité</td>
<td>1</td>
</tr>
</tbody>
</table>

Tableau 7 : Caractéristiques du capteur Eurotron IRTEC 10.
II-5 Conclusion

Nous avons donc selon différentes considérations scientifiques, financières et d’application, conçu un capteur permettant la mesure des infrarouges thermiques atmosphériques. Ce capteur utilise des composants issus de produits industriels. Sa validation ne pourra être effective qu’après un très long temps de déploiement en extérieur et sous différentes conditions climatiques.

Figure 41 : Capteur EUROTRON de type IRTEC 10
Chapitre 5
Validation du concept de mesure
I- Protocole expérimental.

A travers ce premier aspect expérimental, nous avons voulu vérifier deux aspects liés au concept de mesure :

- La température mesurée par un pyromètre correspond à la température de base des nuages. Pour cela, du fait de la disponibilité de données ceilométriques, l’observatoire Météorologie France de Trappes a été retenu.

- Des séries temporelles de mesures de température infrarouge permettent d’obtenir des mesures de nébulosité convergente avec les évaluations des observateurs humains. Pour cela, un second montage expérimental identique en tout point à celui déployé à Trappes a été installé sur le site du « Space Pole » à Bruxelles. Cet endroit est le siège de la station WMO n°6447 qui enregistre toutes les trois heures dans ses messages synoptiques la nébulosité et la hauteur du plafond. Un exemple de message synoptique est présenté sur la figure 42.

Figure 42 : Exemple de tableau synoptique pour la station 6441 du WMO installée à Uccle.

II- Montage expérimental

Les montages déployés sur les deux sites sont totalement identiques. Un capteur pyrométrique de type OS65 BB fabriqué par OMEGA aux Etats Unis a été solidarisé sur un trépied d’appareil photo orientable (figure 43) et ce afin de pouvoir réaliser une orientation en site et azimut optimale. Afin de pouvoir comparer de manière optimale les données infrarouge avec les données du ceilomètre, le montage est orienté dans le même sens que ce dernier et avec le même angle zénithal c’est-à-dire 15°.
La carte du capteur ainsi qu’un multiplexeur OMR 6017 à 8 entrées analogiques différentielles 16 bits afin de compenser les pertes en ligne de signal et à sortie RS 485 ont été intégrés dans un boîtier de type IP 55 (figure 44) placé à quelques mètres du capteur. Ce boîtier est alimenté extérieurement par une tension de 24 VDC. La consommation du dispositif est inférieure à 100 mA. Les données numériques sont véhiculées par un câble multiconducteur blindé vers un PC.

Il a été ajouté au montage une sonde de température de l’air dans un premier temps pour des raisons purement informatives. Cette information s’est avérée ultérieurement nécessaire quant au suivi de l’obstruction du thermomètre infrarouge par des précipitations, car comme indiqué précédemment, la lentille se trouve en retrait.

Les informations sont collectées sur un PC par un logiciel développé sous Delphi 5 (figure 45). La scrutation du multiplexeur est commandée par le PC à une fréquence de 1 Hz et intégrées sur une minute. Le logiciel fournit un fichier de données par jour. Afin de pouvoir comparer les données avec celles des ceilomètres, le montage a été placé à proximité de ces derniers avec un angle zénithal identique de 15°. Les essais ont été conduits sur le site de Météorologie France à Trappes du 23/01/01 au 31/06/01. Le montage déployé sur le parc instrumental de l’Institut d’Aéronomie Spatiale de Belgique est toujours en fonctionnement à ce jour.
Figure 44 : Boîtier électronique contenant la carte et le multiplexeur pour le test monocapteur

Figure 45 : Ecran du logiciel d’acquisition pour les essais monocapteur
Sur la figure 46 est présenté le montage expérimental mis en œuvre sur le site Météorologie France de Trappes et sur la figure 47 celui mis en œuvre dans les installations bruxelloises.

Figure 46 : Dispositif expérimental sur le site Météorologie France de Trappes.

Figure 47 : Dispositif expérimental sur le site du Space Pole à Bruxelles, Belgique.
III- Conversion des données de température en altitude

III-1 Introduction

Des sites tels que ceux de Trappes et de Bruxelles réalisent des radiosondages toutes les douze heures, mais cela n’est pas le cas pour des sites isolés et de plus dans le cadre de l’automatisation de la mesure, l’instrument final doit fonctionner le plus possible sans intervention extérieure. Pour palier à cette difficulté, deux solutions existent :

- réalisation de profils moyens mensuels en traitant les résultats de radiosondage sur une période la plus longue possible.
- utilisation d’un modèle atmosphérique adiabatique tel MSISE-90 (Hedin et al.).

III-2 Profils moyens issus de radiosondages

Avant de réaliser ce calcul, les fichiers doivent être triés c'est-à-dire que les vols incomplets doivent être rejetés. De plus les valeurs doivent être limitées à la troposphère soit environ de 0 à 12 km et traités par une interpolation du troisième ordre en respectant un poids statistique identique pour chaque échantillon.

II-3 Modèle MSISE

Ce modèle adiabatique mis au point par Hedin et al. a subi de nombreuses optimisations au fil des années (Chabrillat, Cockaert et al.) et une version tenant compte de facteurs correctifs résultant des radiosondages réalisés par les stations du WMO est disponible sur le web (URL : http://nssdc.gsfc.nasa.gov/space/model/models/msis.html).

Les sorties du modèle fournissent divers paramètres dont la température en fonction de l’altitude. La figure 50 présente un exemple de résultat. Les données sont converties au format texte et ajustées par un polynôme de degré 7 comme cela est montré sur la figure 50.
Afin de traiter les données de température infrarouge de manière optimale, on réalise une modélisation le 15 de chaque mois à 12h00. Les coefficients des polynômes sont organisés sous forme d’une matrice de 12 colonnes et 8 lignes.

La figure 51 montre les profils après ajustement pour les mois de Janvier (couleur noire) et Octobre (couleur rouge) pour le centre Météorologie France de Trappes. La figure 52 quant à elle montre l’évolution des profils MSISE-90 sur 10 mois pour le site de Bruxelles.
Figure 52 : Profils de température obtenus par le modèle MSISE pour le site de Bruxelles.

Il paraît nécessaire de vérifier la validité de ces profils par rapport à ceux obtenus par des radiosondages. Il est clair que MSISE, comme beaucoup de modèles, considère une parfaite adiabaticité de l’atmosphère, ce qui n’est pas le cas dans la réalité car les inversions thermiques en basse couche sont très fréquentes. Les figures 53 et 54 montrent deux exemples issus du site SGP du programme ARM pour les dates du 5 Mars 2003 et du 16 Mars de la même année.

Figure 53 : Comparaison du profil MSISE (en rouge) avec le profil du sondage (en bleu) réalisé sur le site du SGP le 5 Mars 2003 à 5h31 TU.
Il existe deux alternatives à l’utilisation d’un modèle tel MSISE. Les deux sont tributaires de la réalisation de profils verticaux de température par des radiosondes ou par LIDAR.

- La détermination de profils moyens mensuels en considérant les données issues des mesures décrites ci-dessus est une approche intéressante surtout pour la prise en compte des effets albédométriques dans la couche limite (Terre/atmosphère). Par contre la mise à jour ne devra pas être négligée à moyen et long terme compte tenu des changements climatiques actuels. Pour répondre à cette question, une étude spécifique sur un grand nombre de stations devrait être réalisée.

- L’autre solution serait de prendre en compte les informations du « jour ». Cette méthode permettrait une précision extrême mais dans le cas des radiosondages la question de la variation du profil dans les douze heures entre les lancements reste entière. De plus, pour une information d’altimétrie nuageuse en temps réel ce qui est la demande majoritaire de la plupart des utilisateurs potentiels la mise en place des interfaces de communication serait extrêmement lourde.

- Le dernier est le fait que l’instrument ne doit pas être tributaire de la présence ou non d’un profileur.

En conclusion pour les raisons qui viennent d’être présentées le modèle MSISE-90 a été considéré comme solution adéquate si l’on souhaite que l’instrument travaille de manière autonome. Si cette condition n’est pas rédhibitoire pour l’utilisateur l’utilisation de profils en temps réel prend toute sa valeur. En effet, il peut être embarqué dans le PC attaché à l’instrument, ce qui permet d’obtenir une indépendance pour le système.
IV-4 Résultats expérimentaux

IV-4-1 Résultats sur le site de Trappes

Sur ce site, nous nous sommes principalement intéressés, aux aspects altimétriques en comparant les données infrarouges avec les données d’altitude fournies par les ceilomètres Vaïsala type CT 25K. Les données ont été interprétées en recherchant des corrélations directes entre les altitudes mais également en recherchant en terme de classe d’altitude nuageuse. Ces éléments de classes sont présentés sur la figure 55 ci-dessous.

<table>
<thead>
<tr>
<th>Classification des nuages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuages de basse altitude de 0 à 2000 m</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Nuages de moyenne altitude 2000 à 6000 m</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>*Nuages de haute altitude de 6000 à 7800 m ()</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

(*) Limite supérieure basée sur les performances de Néphélo 1.

Figure 55 : Description des classes d’altitude nuageuses et des typologies associées.

Différents exemples de résultats sont présentés sur les figures 56 à 58. Sur ces figures, on a représenté la comparaison des altitudes ceilométriques et »infrarouge » sous la forme d’altitudes et de classes d’altitude. Les altitudes dites infrarouges ont été obtenues par la fonction de transfert issue de MSISE-90.

Pour ces essais comme nous l’avons déjà indiqué précédemment le capteur pyrométrique a été orienté de manière identique au ceilomètre.
Figure 56 : Comparaison des données altimétriques directe infrarouge et ceilométriques le 17/05/2001.

Ces courbes montrent des écarts significatifs sur l’altitude. Afin de pouvoir corrêler temporellement les variations de plafond, un débruitage en réintégrant par des moyennes centrées sur 5 minutes les mesures ont été réalisées. Un exemple est présenté sur la figure 58.

Figure 57 : Comparaison des données altimétriques via les classes d’altitude infrarouge et ceilométriques le 17/05/2001.
pour les données du 17/05/2001. Ces traitements ont montré de manière claire que l’énergie infrarouge dans la bande 9-14 µm varie bien avec la modification d’altitude mais que sa quantification est plus complexe que prévu.

Figure 58 : Comparaison des données d’altitude nuageuse ceilométrique et infrarouge du 17/05/2001 après réintégration sur 5 minutes.

A l’aide des profils MSISE-90, une température de seuillage a été déterminée pour le site de Trappes en recherchant la température de l’isotherme 7800 m. Cette grandeur a permis d’obtenir des valeurs de taux de couverture nuageuse qui n’ont malheureusement pas pu être comparées avec d’autres techniques durant la campagne de mesures sur Trappes et Bruxelles. Ces valeurs ont été obtenues sur la base de série temporelles seuillées proches de l’algorithme ASOS. Un exemple de ces données de nébulosité est présenté sur la figure 59.

Comme le montre la figure 46, le dispositif expérimental a été placé à proximité des ceilomètres et orienté avec le même angle zénithal à savoir 15°.
IV-4-2 Résultats sur le site de Bruxelles

Comme cela a déjà été indiqué, l’objectif poursuivi sur ce site a été la validation de la nébulosité selon deux approches différentes : Observateur humain et Total Sky Imager de Yankee Environmental Systems.

Des exemples de données issues de mesures infrarouges thermiques avec en regard les données fournies par des Observateurs humains toutes les trois heures sont fournis sur les figures 60 à 62.

Pour chaque essai, nous avons enregistré la température ambiante. En effet, dans les pyromètres industriels et ce afin d’éviter la perception de rayonnement parasite par le capteur, la fenêtre ou la lentille d’entrée selon les produits est placée en retrait. Ce retrait lorsque le pyromètre est placé en extérieur crée une rétention d’eau. Cette dernière entraîne une évolution de la température infrarouge vers la température ambiante d’une manière assez précise. Ce phénomène permet de définir un critère de réjection des valeurs. Ce cas est illustré sur la figure 62.

Les cas ci-après présentent différentes situations de « nuages fractionnés » qui sont les plus difficiles à décrire. La figure 60 représente un régime « nuages fractionnés » continu. Les quatre cas suivants montrent que la méthode permet de décrire des transitions « clear sky/nuages fractionnés » et « nuages fractionnés/overcast » d’une manière plus que satisfaisante.

On peut voir que la mesure toutes les trois heures par les observateurs humains ne permet pas de décrire correctement la variation de la nébulosité.
Pour les exemples suivants :

Le diagramme en haut à droite montre en trait continu l’évolution du plafond en fonction du temps. Cette grandeur est calculée à l’aide de profils moyens. Ces profils moyens résultent de la moyenne des profils de radiosondage établis toutes les 12 heures au cours des 20 dernières années (réalisés par les services de l’IRM sur le site de Bruxelles). Les points montrent les résultats obtenus par l’observateur humain durant la même période.

Le diagramme en bas à gauche montre sous forme de barres rouge montre l’évolution du taux de couverture nuageuse en pourcent. Les points bleus montrent quant à eux les résultats obtenus par des observateurs humains. Il est à noter que ces données sont obtenues en Octa et que la conversion en pourcentage peut induire une erreur de l’ordre de l’octa.

Le diagramme en bas à droite montre la distribution des altitudes nuageuses pour la journée considérée.
Figure 60 : Exemple de données pour le site de Bruxelles le 7/4/2001
Figure 61 : Exemple de données pour le site de Bruxelles le 10/4/2001
Figure 62 : Exemple de données pour le site de Bruxelles le 29/4/2001
Les données infrarouges (Nephelo : dénomination préliminaire de l’instrument CIR), TSI et Observateur humain sont comparées sur le diagramme présenté en figure 63. Cette figure montre en terme de nébulosité une convergence des trois techniques avec un écart type de l’ordre d’un Octa. Les écarts entre les mesures réalisées entre 6 et 8 heures peuvent être expliqués par un phénomène de diffusion lié au pare-soleil fixé sur le miroir du TSI, créant par conséquent une surestimation de la nébulosité. Pour des raisons conceptuelles, le TSI n’a pu être inclus à la phase nocturne de mesure.

![Diagramme de comparaison des techniques Nephelo, TSI et Observateur humain en terme de nébulosité](image.png)

Figure 63 : Comparaison de la technologie Infrarouge avec le Total Sky Imager et les données des observateurs humains en terme de nébulosité

La figure suivante montre une comparaison statistique entre les mesures obtenues par infrarouge et celles obtenues par les observateurs humains. Sur les mesures que nous avons présenté auparavant nous avions des divergences significatives entre les deux diagrammes au niveau des mesures journalières. Ci-dessous on montre que statistiquement sur une longue période on constate une bonne convergence entre les deux techniques.

Les mesures des observateurs humains ne sont pas satisfaisantes à l’échelle de la journée mais gardent une validité a posteriori pour les études des tendances climatologiques.
V- Analyse des résultats expérimentaux

V-1 Introduction
Cette phase d'expérimentation menée sur les sites de Météorologie France à Trappes et de l’Institut d’Aéronomie Spatiale à Bruxelles a montré que le phénomène de mesure des rayonnements infrarouges thermiques était bien utilisable mais que nous devions optimiser la méthodologie de quantification. En effet les altitudes sont entachées d’une très forte erreur qui va en s’accroissant avec la dislocation du ou des plans nuageux. La validité du profil de température utilisé reste entière. Il apparaît cependant nécessaire de les inventorier et de les quantifier. Leur application aux données expérimentales sera réalisée ultérieurement à la présentation de ce mémoire.

V-2 Effet Intégrateur des pyromètres

Comme nous l’avons déjà indiqué, les pyromètres sont des outils de mesure de température sans contact issu du monde industriel. La littérature de ce domaine indique de manière claire que la température mesurée est une intégration surfacique comme le montre la figure 65. Ce schéma est basé sur la température inférieure de mesure du pyromètre OMEGA soit -57°C.

Figure 64 : Représentation des écarts statistiques entre les données des observateurs humains et des mesures infrarouge.
Le champ de vision du pyromètre OMEGA est bien supérieur (+/-6°) à celui du Ceilomètre (+/- 2°) mais la phénoménologie physique utilisée étant différente, l’interprétation de cet élément sera délicat.

L’équation de variation de la température mesurée en fonction du taux de recouvrement de la zone de mesure sera la suivante :

\[T_{\text{mesurée}} = (1 - \frac{\text{Surf nuage}}{\text{Surf total}}) \times (T_{\text{background}}) + (\frac{\text{Surf nuage}}{\text{Surf total}}) \times (T_{\text{nuage}}) \] (Equation 10)

Sur la figure 66 est présenté un exemple de calcul en considérant : \(T_{\text{background}} = -57°C \) et \(T_{\text{nuage}} = -15°C \).

Cet aspect dans l’analyse des erreurs constatées sur les systèmes mono capteurs est un élément clef dans la justification du système multi capteurs. En effet il est nécessaire d’établir un quasi continuum de mesure. Les zones de mesure des pyromètres sont des ellipses dans l’approximation du modèle plan parallèle comme nous le verrons ultérieurement. La solution optimale est elle un recouvrement des ellipses pour créer le continuum on un aspect strictement tangentiel des ellipses de mesure. Le problème est posé mais n’a pas été résolu dans le cadre de ce mémoire.
Figure 66 : Erreur sur la mesure de température en fonction du taux de recouvrement zone de mesure/Taille du nuage.

V-3 Bruit de fond atmosphérique

V-3-1 Avant propos

Lors des différents essais réalisés, nous avons constaté un accroissement parabolique de la température infrarouge en fonction de l’angle zénithal. Avec un ciel totalement bleu, cette constatation avait déjà été faite par d’autres auteurs tel Gaumet qui avait proposé une formule paramétrique linéaire de correction (0°/ 0K – 90°/15K). La compréhension et une quantification de ce phénomène sont extrêmement importantes car elles peuvent entacher de manière préjudiciable les résultats de la fonction de transfert altimétrique.

V-3-2 Détails du calcul

Ce bruit de fond est lié à la présence d’eau sous une forme non condensée sur le trajet optique. Pour connaître cette quantité et les paramètres thermodynamiques associés sur toute l’épaisseur de la troposphère, il est nécessaire d’utiliser le résultat de radiosondages. Comme cela a été indiqué dans le chapitre relatif à la méthode de Chernyik Elridge, les calculs ci-
après seront liés à la durée de validité dans le temps des sondages. Un exemple de sondage PTU réalisé sur le site de Trappes est fourni sur la figure 67.

Figure 67 : Exemple de données PTU issues d’un radiosondage (n° d’ordre 66690) sur le site Météorologie France de Trappes

Le premier stade du calcul sera d’obtenir pour chaque niveau (i.e. typiquement par incrément de 100 m) l’humidité absolue.

La première étape est de calculer pour chaque niveau de température T, la pression de vapeur saturante à l’aide de la formule empirique de Tetens (Equation 11).

\[e_s = e_0 \cdot \exp\left(\frac{b \cdot (T - T_1)}{T - T_2} \right) \] \hspace{1cm} \text{(Equation 11)}

Avec :

\[e_0 = 0.611 \text{kPa} \]
\[b = 17.2694 \]
\[T_1 = 273.16 \text{ K} \]
\[T_2 = 35.86 \text{ K} \]

La seconde étape est également pour chaque niveau de calculer l’humidité absolue à la pression de vapeur saturante à l’aide de l’équation 12.
Avec R_v constante de la vapeur d’eau et égale à 461 J.K$^{-1}$.kg$^{-1}$

Nous arrivons donc à l’étape ultime de ce premier stade avec le calcul de l’humidité absolue ρ_v (Equation 13).

$$\rho_v = \rho_{vs} \cdot HR$$

Où HR est la valeur de l’humidité relative issue du radiosondage pour chaque niveau.

Le second stade est le calcul de l’émissivité moyenne pour chaque tranche de 100 m de la troposphère. Cette grandeur est définie par les équations 7 et 8 que nous rappelons ici pour mémoire.

$$\epsilon = 1 - \exp[-D \cdot k_{abs} \cdot \text{CWP}]$$

$$k_{abs} = k_1 (1 - f_{glace}) + k_1 f_{glace}$$

Nous considérerons dans ce calcul que l’air humide contient uniquement une phase gazeuse l’eau ce qui conduit à une équation 8 réduite présentée ci après :

$$k_{abs} = k_1 = 0.090361$$

CWP (Cloud Water Path) est obtenu quant à lui grâce à la formule 14.

$$\text{CWP} = \frac{\rho v_i}{\rho_{dry i} + \rho v_i} + \frac{\rho v_i}{\rho_{dry i} + \rho v_i} \cdot \frac{(P_B_i - P_{B_i-1})}{g}$$

Où g est l’accélération de la pesanteur et P_B la pression barométrique en hPa et ρ_{dry} la masse volumique de l’air sec. CWP s’exprime en g/m².

On dispose désormais de la valeur de l’émissivité de l’air pour chaque tranche de la troposphère. La troposphère a donc été discrétisée et on considère que chaque niveau émet une énergie dans la bande 9-14 µm selon la loi de Stefan Boltzmann (Equation 15)

$$E = \epsilon \cdot \sigma \cdot T^4$$
Afin de prendre en compte le cône de vision de chaque pyromètre, l’énergie doit être corrigée par le rapport entre le volume du disque considéré et le volume du cône troposphérique étudié, ce qui conduit à une forme modifiée de l’équation 15 (Equation 16).

\[E = \frac{V_i}{V_{tot}} \cdot \epsilon \sigma T^4 \tag{Equation 16} \]

\(V_i \) et \(V_{tot} \) sont des volumes correspondants au volume de la couche considérée (\(V_i \)) et du cône troposphérique étudié (\(V_{tot} \)) et sont des fonctions de l’angle zénithal et de l’angle d’ouverture de chaque pyromètre. Les calculs ont été réalisés dans le cadre de l’approximation du modèle plan parallèle.

Afin de tenir compte de la différence de trajet optique aux différents angles zénithaux, il faut ajouter un second terme de pondération lié au rapport des trajets optiques et ce toujours dans le cadre de l’approximation du modèle plan parallèle ce qui a limité les calculs à un angle zénithal maximal de 40° (Equation 17).

\[E = \frac{d_w}{d_{z=0}} \cdot \frac{V_i}{V_{tot}} \cdot \epsilon \sigma T^4 \tag{Equation 17} \]

De même, on considère un nuage assimilé à un corps noir placé aux différentes altitudes dont l’énergie émise est baptisée \(E_n \) (Equation 18).

\[E_n = \sigma T^4 \tag{Equation 18} \]

L’énergie vue par le pyromètre et baptisée \(E_{tot} \) s’exprimera selon l’équation 19.

\[E_{tot_n} = E_n + \sum_{i=0}^{h-\Delta h} E_i \tag{Equation 19} \]

Cette énergie est convertie par l’électronique du pyromètre en une température \(T_{tot} \) (Equation 20).

\[T_{tot} = \sqrt[4]{\frac{E_{tot_n}}{\sigma}} \tag{Equation 20} \]

Nous arrivons donc à l’équation finale (Equation 21) qui nous fournit l’erreur sur la mesure \(\Delta T \).

\[\Delta T = T_{tot} - T \tag{Equation 21} \]
Ci-après, on trouvera six exemples (Figures 68 à 70) de traitements de radiosondages issus de la station Météorologie France de Trappes. Pour chaque exemple, est fournie la visualisation PTU ainsi que la variation en angle zénithal et quatre sous graphiques détaillant les étapes de calcul.

Figure 68 : Profils PTU pour le sondage n° 66465 de la station de Météorologie France de Trappes

Figure 69 : Variation de l’erreur sur la mesure de la température infrarouge en fonction de l’angle zénithal d’après le sondage n° 66465 de la station de Météorologie France de Trappes.
Figure 70 : Etapes de calcul pour le traitement du sondage n° 66465 de la station de Météorologie France de Trappes.
Conclusion

Ces cas ont été choisis du fait de la variété des profils d’humidité relative présentés (Concentration au niveau du sol ou étalement vertical sur plusieurs centaines de mètre). On peut constater qu’en terme de variation en fonction de l’angle zénithal, les hypothèses de Gaumet semblent vérifiées. Par contre au zénith le bruit de fond est non nul et varie de 3 à 5°C dans les cas les plus critiques. De plus, l’effet n’est pas constant en altitude ce qui explique l’accroissement de nos erreurs sur les hauteurs de plafond en fonction de l’altitude.

V-4 Emissivité nuageuse

Pour l’ensemble des données qui ont été traitées et présentées l’émissivité des nuages a été considérée comme égale à 1. Cette hypothèse se justifie par les raisons suivantes: tout d’abord faute de moyens de mesure adéquats de cette grandeur sur les sites d’expérimentation, de plus l’instrument final se doit d’être indépendant et de fournir en temps réel les informations retenues.

Dans le cadre de ce mémoire, il n’est pas possible d’omettre ce facteur, c’est pourquoi ci-dessous est présentée une approche numérique de l’erreur commise sur la mesure de température et ce pour différentes valeurs de l’émissivité nuageuse dont les extremums fournis par la littérature sont 0.7 pour les « Cirrus » et 0.96 pour les « Cumulus Congestus ».

Si on écrit la loi de Stefan Boltzmann pour un nuage on obtient la formulation suivante :

$$E_{\text{nuage}} = \epsilon_{\text{nuage}} \cdot \sigma \cdot T_{\text{nuage}}^4$$ \hspace{1cm} (Equation 22)

Les pyromètres étant réglés sur une émissivité de 1, l’énergie mesurée peut alors s’écritre de la manière suivante :

$$E_{\text{mesure}} = \sigma \cdot T_{\text{mesure}}^4$$ \hspace{1cm} (Equation 23)

Si on considère que l’énergie émise est égale à l’énergie mesurée, on peut donc poser l’égalité entre les équations 22 et 23. Ce qui conduit ainsi à la relation suivante entre la température réelle de base du nuage et la température mesurée par le pyromètre :

$$T_{\text{nuage}} = \sqrt[4]{\frac{E_{\text{mesure}}}{\epsilon_{\text{nuage}} \cdot \sigma}} \cdot T_{\text{mesure}}$$ \hspace{1cm} (Equation 24)

La figure 71 montre l’évolution de la température mesurée en fonction de la température de base du nuage pour différentes valeurs d’émissivité
V-5 Influence des aérosols atmosphériques

Parmi les causes d’incertitude potentielle sur la précision de nos mesures, il est nécessaire de s’intéresser à la contribution émissive des aérosols. C’est pourquoi des simulations ont été réalisées à l’aide des modèles MODTRAN. Parmi l’ensemble des paramètres nécessaires à l’exécution de MODTRAN les options suivantes ont été choisies :

- Aérosols de type urbain, maritime et mixte
- Visibilité : variant de 5 km à l’infini.

L’irradiance obtenue pour les angles zénithaux utilisés par CIR varie entre 0,001 W/m² et 0,00123 W/m². Cette énergie est largement inférieure aux minima énergétiques produits par les nuages. De plus, l’accroissement d’énergie lié à la variation de la quantité d’aérosol est de 10 à 30 fois inférieure à l’accroissement d’énergie lié à la présence de nuages, ce qui la rend négligeable, en première approximation, pour les mesures pyrométriques que nous réalisons.

V-6 Conclusions

Nous avons vu au paragraphe 4 de ce chapitre que le travail devait porter désormais sur la quantification de l’énergie reçue par l’élément sensible du pyromètre et convertie en
température. En effet, il apparaît sur les relevés expérimentaux pratiqués que des phénomènes parasites viennent affecter significativement la précision de la mesure.

Dans les trois derniers paragraphes du chapitre 5, nous avons traité trois sources potentielles d’erreur qui ne représentent pas une liste exhaustive. On peut ainsi évoquer la définition imparfaite de l’interface « nuage/atmosphère libre », mais aussi qu’aux grands angles zénithaux, la visée du pyromètre n’intègre pas l’extension verticale du nuage.

Ces trois phénomènes ont des effets opposés :

- recouvrement zone de mesure : refroidissement,
- bruit de fond atmosphérique : réchauffement, et
- émissivité nuageuse inférieure à 1 : refroidissement.

Sur la base de ces essais, un instrument prototype baptisé CIR 7 équipé de 7 pyromètres de type OMEGA modifié a été développé et mis en œuvre sur le site de Bruxelles (Figure 72).

Figure 72 : CIR-7 déployé sur le site de l’IASB à Bruxelles
Comme le montre la figure 90, les pyromètres sont placés sur une tourelle en demi cercle avec un espacement de 12°. Ce support des capteurs est animé d’un mouvement de rotation par incrément de 12° de 0° à 348° ce que fournit un ensemble de 181 points de mesure sachant que les données du capteur zénithal sont moyennées.

Les capteurs sont disposés de part et d’autre de la tourelle pour des raisons d’encombrement mécanique mais aussi afin de « moyennner » la réponse du fait de la dynamique des couches nuageuses (figure 73).

Figure 73 : Positionnement des pyromètres OMEGA modifiés sur la tourelle de type CIR-7

Les essais de Trappes et Bruxelles que nous avons présentés dans ce chapitre sont poursuivis sur le site de Bruxelles depuis maintenant plus de deux ans avec ce prototype. C’est un appareil en tout point identique qui a été utilisé pour la campagne d’inter comparaison au SGP que nous évoquerons au Chapitre 7.

Le faible nombre de points de mesure du CIR-7 (181 points) a conduit durant le second semestre 2003 à la demande du Hong-Kong Observatory à la construction d’un instrument de type CIR-13 équipé de pyromètres Eurotron (Figure 74). Les capteurs IRTEC 10 fabriqués par la société EUROTRON en Italie n’étant pas fiables, l’instrument est actuellement en cours de révision avec des pyromètres spécialement développés pour l’application météorologique.

Nous aurons l’opportunité dans le chapitre suivant de revenir plus en détail sur l’évolution de l’instrument précédent.
Aussi bien pour les capteurs isolés que pour les configurations CIR-7 et CIR-13, des essais extrêmement complets devront être menés. Le mode opératoire de ces derniers devra être précédé d’une phase de simulation numérique afin de fournir les éléments de réflexion nécessaires.
Chapitre 6
Modélisation et traitement d’images de couverture nuageuse.
I- Introduction

Nous avons vu dans le précédent chapitre que le principal obstacle dans l’estimation correcte de l’énergie infrarouge thermique reçue par les pyromètres était lié à la distribution spatiale et verticale des nuages en situation de « nuages fractionnés ». Afin de mieux approcher cet aspect, il a été décidé une phase de simulation numérique avec la mise au point d’un modèle bidimensionnel permettant de calculer les empreintes thermiques générées par des pseudo nuages statiques.

II- Grilles de mesure

Pour des raisons d’optimisation du temps de calcul, il a été décidé d’utiliser l’approximation du modèle plan parallèle pour la définition des grilles de mesure et pour les simulations ultérieures. Il est certain que la validité de cette approche peut être discutée pour des angles zénithaux au-delà de 45° mais l’évasement des zones de mesure extrêmes étant telle que les informations resteront cohérentes pour l’objectif visé.

La figure 75 montre la grille de mesure de CIR-7 à une altitude de 3000 m. Chaque capteur possède un angle d’ouverture de 6°. Les notations dN et dE indiquent respectivement les distances selon l’axe Nord/Sud et Est/Ouest.

Figure 75 : Grille de mesure du CIR-7 à 3000 m (distances exprimées en m).
Pour le CIR-13, la grille de mesure a été élaborée sur les mêmes bases et est présentée sur la figure 76. Il est bon de rappeler que ces pyromètres possèdent un angle d’ouverture de +/- 2° et que l’angle zénithal maximal est de 70° et non 72° comme pour le CIR-7. Cette grille présente un meilleur taux de couverture du champ de vision de l’instrument ce qui est une condition impérative pour pouvoir envisager la génération d’une imagerie nuageuse.

Figure 76 : Grille de mesure du CIR-13 (distances exprimées en m).

Chaque ellipse a été tracée avec les équations 25 à 32 présentées ci après : x étant la coordonnée sur l’axe dN et y étant la coordonnée sur l’axe dE.

La première étape est le calcul des deux coefficients a et b de chaque ellipse :

\[a = \frac{h \cdot (\tan[\theta + \delta] - \tan[\theta - \delta])}{2} \]
\[b = \tan[\delta] \cdot h \cdot \sqrt{1 + 0.25 \cdot (\tan[\theta + \delta] + \tan[\theta - \delta])^2} \]

(Equation 25)
(Equation 26)
où
- h : est l’altitude de calcul de la grille.
- d : est le demi-angle d’ouverture du capteur en radian.

Dans un second temps on calcule classiquement au centre du référentiel les coordonnées des points de bordure de l’ellipse.

\[x = a \cos[\alpha] \] \hspace{1cm} (Equation 27)

\[y = b \sin[\alpha] \] \hspace{1cm} (Equation 28)

où - a est un angle de révolution de l’ellipse variant de 0 à 2p.

Il est nécessaire maintenant de calculer les coordonnées \(x_d \) et \(y_d \) du centre de l’ellipse de mesure.

\[x_d = \cos[\gamma] \cdot h \cdot \frac{\tan[\theta + \delta] + \tan[\theta - \delta]}{2} \] \hspace{1cm} (Equation 29)

\[y_d = \sin[\gamma] \cdot h \cdot \frac{\tan[\theta + \delta] + \tan[\theta - \delta]}{2} \] \hspace{1cm} (Equation 30)

où - ? est l’angle d’azimut de la zone de mesure.

En appliquant le décalage par rapport à l’origine et la rotation de l’ellipse par l’angle azimutal on obtient finalement les formules suivantes pour les coordonnées \(x_p \) et \(y_p \).

\[x_p = x \cos[\gamma] - y \sin[\gamma] + x_d \] \hspace{1cm} (Equation 31)

\[y_p = y \cos[\gamma] + x \sin[\gamma] + y_d \] \hspace{1cm} (Equation 32)
III- Modélisation par méthode de Monte Carlo.

III-1 Avant propos

Les grilles de mesure étant établies, il est maintenant nécessaire de définir une forme bidimensionnelle possédant une description analytique simple et représentative de la géométrie nuageuse. Sous nos latitudes moyennes, les situations de « nuages fractionnés » observées impliquent des nuages de formes allongées. Une observation simple a conduit au choix de l’ellipse dont la température fixée par un profil standard sera homogène sur toute sa surface et dont l’émissivité sera fixée à 1.

Pour toutes les autres zones du plan nuageux vues par l’instrument, la température est fixée à 216 K et l’émissivité est fixée également à 1. Maintenant, il faut déterminer une méthode permettant de définir la surface de chaque ellipse de mesure couverte par le nuage virtuel. Pour cela, la méthode de Monte Carlo (tirage aléatoire) a été retenue.

III-2 Principe de la méthode de Monte Carlo

La méthode de Monte Carlo est une méthode d’intégration des fonctions bornées. La littérature fournit très souvent pour illustrer cette méthode le calcul du nombre pi en effectuant des tirages aléatoires de couples de valeurs x et y compris dans un carré de côté unitaire dans lequel est inscrit un cercle de rayon unitaire ainsi schématisé sur la figure 77.

![Figure 77 : Schéma de principe de calcul du nombre pi par méthode de Monte Carlo.](image)
Les points de coordonnées (x, y) inscrits dans le cercle sont considérés comme des succès. Pour être convergente, cette méthode requiert un grand nombre de tirages aléatoires de l’ordre de 10^6.

L’équation 33 ci-dessous présente la méthodologie de calcul :

$$\frac{N_s}{N_{tot}} = \frac{S_{cercle}}{S_{boîte}} = \frac{\pi \cdot (1^2)}{1.1}$$

(Equation 33)

où
- N_s est le nombre de succès.
- N_{tot} est le nombre total de tirages de couples (x, y) réalisés.

III-3 Générateurs aléatoires de nombre.

Pour fonctionner de manière nominale la méthode de Monte Carlo requiert des générateurs aléatoires homogènes, dont les valeurs consécutives sont indépendantes. Dans le cadre de cette étude, la mise au point du modèle a été réalisée sous Scilab et la réalisation des calculs sous forme d’un exécutable spécifique développé sous Visual C++ de Microsoft et utilisant Ran3 de Numerical Recipes.

Les figures 78 et 79 présentent la vérification du générateur aléatoire de Scilab.

Figure 78 : Vérification de l’homogénéité de distribution des valeurs pour le générateur de nombre aléatoire du logiciel SCILAB.
III-4 Principe de fonctionnement du code et qualité de l’intégration Monte Carlo

Le code génère des jeux de valeurs aléatoires x et y positionnées dans « la boîte de tir ». Cette dernière est dimensionnée, considérant les valeurs minimales et maximales en terme d’abscisses et d’ordonnées pour chaque jeu d’ellipse. Le code vérifie pour chaque jeu de coordonnées l’appartenance à l’ellipse de mesure et à l’ellipse symbolisant le nuage virtuel. Si l’appartenance est double le point est compté comme appartenant à l’intersection.

Les surfaces « Monte Carlo » de l’ellipse de mesure, de l’ellipse du nuage virtuel et la surface de recouvrement sont obtenues à l’aide des équations 34, 35 et 36.

\[
S_{\text{nuage}} = S_{\text{boîte}} \cdot \frac{N_{\text{succès nuage}}}{N_{\text{total}}} \quad \text{(Equation 34)}
\]

\[
S_{\text{ellipse mesure}} = S_{\text{boîte}} \cdot \frac{N_{\text{succès ellipse mesure}}}{N_{\text{total}}} \quad \text{(Equation 35)}
\]

\[
S_{\text{intersection}} = S_{\text{boîte}} \cdot \frac{N_{\text{succès nuage ∩ succès ellipse mesure}}}{N_{\text{total}}} \quad \text{(Equation 36)}
\]
Pour optimiser le temps de calcul, le code détermine dans un premier temps qualitativement si les deux ellipses possèdent une zone d’intersection. Si tel est le cas, le processus Monte Carlo est engagé pour 10^6 couples de valeurs (x,y).

Afin d’évaluer ensuite la précision du processus Monte Carlo, un calcul d’incertitude relative sur la surface de l’ellipse de mesure et du nuage virtuel est réalisé, puisque ces deux grandeurs peuvent être calculées précisément via les paramètres a et b de chaque ellipse calculés par le modèle.

Deux exemples sont présentés sur les figures 80 et 81.

![Figure 80: Evolution de l’erreur relative dans le calcul de la taille du nuage virtuel en fonction de l’azimuth et de l’angle zénithal (l’angle zénithal et l’azimut sont exprimés en degrés).](image)

Lors de la mise au point du modèle, les « boîtes de tir » ont été rectangularisées pour augmenter la précision mais aux grands angles l’incertitude relative reste bien supérieure aux valeurs calculées pour la partie centrale.

La température de chaque ellipse de mesure de l’instrument est déterminée à l’aide de l’équation 10 que nous rappelons ici pour mémoire.
\[T_{\text{mesurée}} = (1 - \frac{\text{Surf}_{\text{nuage}}}{\text{Surf}_{\text{total}}}) \times (T_{\text{background}}) + (\frac{\text{Surf}_{\text{nuage}}}{\text{Surf}_{\text{total}}}) \times (T_{\text{nuage}}) \] (Equation 10)

Figure 81 : Evolution de l’erreur relative dans le calcul de la taille de l’ellipse de mesure en fonction de l’azimut et de l’angle zénithal (l’angle zénithal et l’azimut sont exprimés en degrés).

III-5 Essais réalisés

L’objectif fixé pour ces simulations statiques est tout d’abord la détermination du seuil de sensibilité de l’instrument en altitude, puis de vérifier la restitution des formes dans différentes positions du champ de mesure de l’instrument.

Un nuage virtuel elliptique a été placé à l’origine du référentiel avec son axe principal confondu avec l’axe x’ox du référentiel. Les paramètres de cette ellipse sont :

- a= 3 km
- b= 0.5 km
- Angle de rotation 0°.

Les caractéristiques des différents essais réalisés sont décrites dans le tableau n°10 et deux exemples d’empreintes sont présentés sur les figures 82 et 83 dans le cas d’une tourelle à 7 capteurs.
<table>
<thead>
<tr>
<th>Trial</th>
<th>Altitude (m)</th>
<th>Température (°C)</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>10000</td>
<td>-43.1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8000</td>
<td>-32.5</td>
<td>99</td>
</tr>
<tr>
<td>10</td>
<td>6000</td>
<td>-19</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4000</td>
<td>-4.5</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2000</td>
<td>8.3</td>
<td>100</td>
</tr>
<tr>
<td>13</td>
<td>1000</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>500</td>
<td>14.7</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 8 : Essai d’altitude pour une ellipse centrée dans la zone de mesure

Figure 82 : Empreinte thermique pour la simulation à 8000 m avec la tourelle 7 capteurs (l’échelle de couleur correspond à des températures exprimées en °C).
Figure 83 : Empreinte thermique pour la simulation à 2000 m avec la tourelle à 7 capteurs (l'échelle de couleur correspond à des températures exprimées en °C).

A ce niveau afin de mesurer les apports de la tourelle à 13 capteurs, une simulation a été réalisée à 2000 m. Le résultat est présenté sur la figure 84.

Figure 84 : Empreinte thermique pour la simulation à 2000 m avec la tourelle à 13 capteurs (l'échelle de couleur correspond à des températures exprimées en °C).
Une étude altimétrique identique à celle menée précédemment a montré que le seuil à 8000 m déterminé dans le cas précédent descendait aux environs de 5000 m pour des ellipces décentrées. Nous avons focalisé les calculs sur la restitution de forme toujours à 2000 m qui est la zone où nous trouvons la plupart des types de nuages climatologiquement actifs.

Plusieurs simulations à nuages multiples ont été réalisées. La plus représentative est celle présentée sur la figure 85. Vous trouverez le résultat de simulation avec la tourelle à 7 capteurs sur la figure 86 et avec la tourelle à 13 capteurs sur la figure 87.

Figure 85 : Position initiale des ellipces pour la simulation à 2000 m.

Figure 86 : Résultat de la simulation multijuages avec la tourelle à 7 capteurs (l’échelle de couleur correspond à des températures exprimées en °C).
Figure 87 : Résultat de la simulation multi nuages avec la tourelle à 13 capteurs (l’échelle de couleur correspond à des températures exprimées en °C).

Les figures 86 et 87 montrent de manière indéniable que la tourelle 13 capteurs permettra un meilleur rendu des formes que la tourelle à sept. On peut voir sur la figure 87 qu’un recouvrement partiel comme cela est le cas pour les deux ellipses ne possédant pas un recouvrement axial avec les zones de mesure crée une distorsion dans la restitution des formes nuageuses.

IV- Méthode des moments du second ordre

IV-1 Description de la méthode

En se basant dans un premier temps sur les simulations, nous avons recherché une méthode de description des formes nuageuses, afin de pouvoir l’appliquer ensuite sur les données expérimentales.

Cette méthode utilisée en traitement d’image pour la reconstitution de formes est basée sur le calcul des moments d’inertie (m_{nk}). Elle peut être décrite de la manière suivante :

$$m_{nk} = \frac{1}{N} \sum_{i=1}^{n} P(x_i - x_k)^n (y_i - y_k)^p$$ \hspace{1cm} (Équation 37)
où :
- N est un facteur de normalisation,
- P est un facteur de pondération,
- dans le cas du CIR-7 la somme est réalisée sur les 181 points de mesure, et
- \(x_g \) et \(y_g \) sont les coordonnées du barycentre.

Pour mémoire, on rappelle :

\[
x_g = \frac{\sum_{i=0}^{n} \lambda_i \cdot x_i}{\sum_{i=0}^{n} \lambda_i} \quad \text{(Equation 38)}
\]

\[
y_g = \frac{\sum_{i=0}^{n} \lambda_i \cdot y_i}{\sum_{i=0}^{n} \lambda_i} \quad \text{(Equation 39)}
\]

Après divers essais, \(N \) et \(B(T_i) \) ont été définis comme suit :

\[
N = \sum_{i=1}^{n} S_i \cdot B(T_i) \quad \text{(Equation 40)}
\]

Pour prendre en compte le recouvrement entre les ellipses de mesure, lequel n’est pas constant pour les différentes couronnes de mesure, nous avons redéfini pour chaque couronne « des surfaces de mesure \(S_i \) » comme les éléments de base du diagramme radar correspondant à la grille de mesure.

\(B(T_i) \) est une fonction Booléenne conditionnée par une température de seuillage. Si l’ellipse de mesure ne reçoit aucun signal du nuage virtuel \(B(T_i) \) est égal à zéro ; dans le cas contraire, elle est égale à 1. Chaque calcul a été réalisé en considérant deux conditions limites.

- \(T > -57^\circ \text{C} \) (Température de bruit de fond de la simulation), ou
- \(T = T \) simulation.

Considérant ces conditions, ainsi que les grandeurs \(m_{20}, m_{02} \) et \(m_{11} \) issues de l’Equation 37, définit les grandeurs \(a, b \) et \(\gamma \) par les équations 41, 42 et 43.

\[
a = \sqrt{m_{02} + m_{20} + \sqrt{(m_{20} - m_{02})^2 + 4 \cdot m_{11}^2}} \quad \text{(Equation 41)}
\]
\[b = \sqrt{m_{02} + m_{20} - \sqrt{(m_{20} - m_{02})^2 + 4m_{11}^2}} \]

(Equation 42)

\[\theta = \frac{\text{ArcTan} \left[\frac{2m_{11}}{m_{20} - m_{02}} \right]}{2} \]

(Equation 43)

où \(a \) est le moment d’inertie le long de l’axe principal de la forme, \(b \) le moment d’inertie perpendiculaire à \(a \) et \(\theta \) l’angle dans le sens trigonométrique entre \(a \) et l’axe horizontal du référentiel.

IV-2 Construction de formes en fonction de l’altitude

La méthode décrite dans le paragraphe précédent a été utilisée sur les simulations 8 à 14 dans le tableau 8. Les figures 88 et 89 montrent respectivement les résultats du calcul pour les simulations 9 et 12. Sur ces figures, les étoiles noires montrent des points de mesure possédant une température supérieure à celle du ciel clair (-57°C) et inférieure à la température de simulation.

Les étoiles bleues quant à elle symbolisent les points de mesure qui se trouvent à la température de simulation. L’ellipse intérieure est construite par la méthode des moments du second ordre avec les points représentés par les étoiles bleues et l’ellipse extérieure en utilisant les points représentés par les étoiles bleues et noires.
Figure 88 : Application de la méthode des moments du second ordre à la simulation n°9.

Figure 89 : Application de la méthode des moments du second ordre à la simulation n°12.
Conclusion

La méthode des moments du second ordre ne permettra pas de décrire les formes nuageuses du fait du maillage en « pixels » à taille variable des grilles de mesure des CIR-7 et CIR-13. Par contre, en recherchant la connexité des blocs de points, elle peut fournir pour certaines situations de « nuages fractionnés » cumuliformes la direction de propagation du plan nuageux.

V- Interpolations de température.

V-1 Avant-propos

De manière opérationnelle, la localisation des masses nuageuses passe par la création d’une « image ». Les besoins sont de diagnostiquer les zones de ciel clair (couleur bleue), les nuages fins (couleur grise) et les nuages épais (couleur blanche). Les nuages fins peuvent correspondre à des formations de type Cirrus mais aussi à des bordures éthérées de certains nuages stratiformes. Vu les problématiques non résolues que nous avons prélablement mentionnées, il apparaît actuellement raisonnable de se limiter à une visualisation bidimensionnelle. Certains travaux combinant deux instruments du même type (stéréovision) laissent espérer une optimisation de la qualité des images mais aussi une méthode de détermination altimétrique indépendante du profil de température (Kasianov, Long et al.).

V-2 Imagerie thermique

Différents enregistrements ont été réalisés devant le bâtiment de la société ATMOS (Figure 90). La plus simple représentation est le diagramme radar thermique (Figure 91) du fait de la dimension croissante des pixels crée un CCD « marguerite » à « pixels » trapézoïdaux de tailles variables.

Figure 90 : Instrument CIR-13 devant le bâtiment de la société ATMOS.
Le seuillage de ces diagrammes radar sur la même base que ceux réalisés précédemment, conduit à des figures difficilement exploitables.

Figure 91 : Exemple de diagramme radar thermique

V-3 Interpolation bilinéaire

Le domaine de l’interpolation est un très vaste sujet. Différentes tentatives (1/d, 1/d²…) ont été réalisées avec des cas d’indétermination et nous avons finalement retenu la méthode d’interpolation bilinéaire ce qui conduit à un résultat du type de celui présenté sur la figure 92.

Figure 92 : Exemple d’interpolation bilinéaire thermique
On remarque sur la figure 92, que lorsqu’il est visible, le spot solaire apparaît de manière précise.

Arrêtons-nous sur la méthode d’interpolation et plaçons-nous dans le cas de la tourelle CIR-7. Nous disposons de deux matrices. L’une relative aux valeurs d’azimut $\text{azim1}[1..30]$, la seconde aux valeurs d’angle zénithal $\text{zen1}[1..7]$ avec

\[
\text{azim1}[1]=0^\circ \ldots \text{azim1}[30]=348^\circ \text{ et } \text{zen1}[1]=0^\circ \text{ et } \text{zen1}[7]=72^\circ
\]

En plus, nous disposons d’une troisième matrice dédiée aux températures mesurées $T[i,j]$ avec

\[
T[1..30,1..7]
\]

L’objectif est d’estimer T en dehors de l’ensemble des points expérimentaux pour un point de coordonnées (azim, zen) qui devra se trouver dans un carré de points expérimentaux définis par les équations 44 et 45.

\[
\text{azim1}[i] \leq \text{azim} \leq \text{azim1}[i + 1] \quad (\text{Équation 44})
\]
\[
\text{zen1}[j] \leq \text{zen} \leq \text{zen1}[j + 1] \quad (\text{Équation 45})
\]

Pour chaque angle du carré, $T1$ prend les valeurs $T2,T3,T4$ et $T5$ définies par les équations 46 à 49.

\[
T2 \equiv T1[i][j] \quad (\text{Équation 46})
\]
\[
T3 \equiv T1[i + 1][j] \quad (\text{Équation 47})
\]
\[
T4 \equiv T1[i + 1][j + 1] \quad (\text{Équation 48})
\]
\[
T5 \equiv T1[i][j + 1] \quad (\text{Équation 49})
\]

Les formules de l’interpolation bilinéaire sont définies par les équations 50, 51 et 52.

\[
t \equiv \frac{\text{azim} - \text{azim1}[i]}{\text{azim1}[i + 1] - \text{azim1}[i]} \quad (\text{Équation 50})
\]
Cette étape d’interpolation étant franchie, le seuillage devient aisé et conduit à des « images du type de celles présentées sur les figures 93 et 94. Les températures utilisées pour la réalisation de cette interpolation ne prennent en compte ni la correction du modèle de bruit de fond, ni de la droite de Gaumet. Mais il est important de préciser qu’aucune de ces corrections n’a pu être validée jusqu’à présent expérimentalement.

\[
T(\text{azim}, \text{zen}) = (1 - t)(1 - u)T2 + t(1 - u)T3 + t\cdot u\cdot T4 + (1 - t)\cdot u\cdot T5
\]

Figure 93: Exemple d’image du ciel après interpolation et seuillage

Figure 94: Autres exemples d’images du ciel après interpolation et seuillage

Conclusion

L’interpolation permet de générer des images « tricolores » permettant une exploitation opérationnelle des données. En effet, l’une des problématiques est de définir où se trouvent les masses nuageuses. Une comparaison avec des images TSI montre que nous devons optimiser notre méthodologie en terme de représentation des nuages fins.
Chapitre 7
Campagne d’inter comparaison ARM au SGP
I – Localisation, Infrastructures et Objectifs.

En 1990, le département Américain de l’énergie (DOE) décida d’instaurer un programme de recherche baptisé ARM (Atmospheric Radiation Measurements) afin de permettre aux scientifiques d’optimiser les modèles radiatifs et de nuage et par conséquent les modèles atmosphériques de circulation générale. Pour permettre la collecte de données nécessaire à cet objectif, un centre d’essai fut créé en 1992 dans le Nord de l’Oklahoma au Sud Est du Comté de Lamont (Figure 95). Ce site a été retenu du fait de sa géographie relativement homogène (situation de plaine), de sa variété climatique, nuageuse, radiative et de ses larges variations climatiques saisonnières.

Figure 95 : Localisation du Southern Great Plains (SGP) au Nord de l’Oklahoma entre Oklahoma City et Wichita.

Comme le montre la figure 96, le site est équipé de bâtiment et de plate-formes d’expérimentation dotées d’infrastructures informatiques et de communication haute vitesse permettant un contrôle des mesures à distance.

Figure 96 : Plate-forme expérimentale utilisée pour la campagne de mesure.
Comme nous le verrons plus en détail ultérieurement, le SGP dispose de ses propres instruments et accueille des instruments extérieurs pour des campagnes de plus ou moins longue durée. Un personnel permanent assure la maintenance des instruments et des infrastructures.

II- Protocole expérimental

Cette campagne de mesures intégrée dans le programme annuel et qui s’est déroulée du 19 février 2003 jusqu’au 31 Mars de la même année regroupait les équipes de différentes laboratoires (figure 97) :

- Pacific Northwest National Laboratory.
- Montana State University.
- Institut d’Aéronomie Spatiale de Belgique.
- Université du Maine.
- CERES/NOAA.

Figure 97 : Participants à la campagne

De nombreux travaux ont montré que les mesures satellitaires ne pouvaient en aucun cas décrire totalement la couverture nuageuse notamment du fait de l’éloignement du satellite. C’est
pourquoi l’instrumentation sol est nécessaire et se doit d’être inter-comparée pour déterminer un champ d’application précis de chaque instrument. Ceci a été l’objet de cette campagne.

Comme cela a été préalablement indiqué, le SGP dispose d’une instrumentation permanente. En matière de couverture nuageuse, les principaux instruments sont décrits dans le tableau 9.

<table>
<thead>
<tr>
<th>Instruments</th>
<th>Type</th>
<th>Type de mesure</th>
<th>Jour/Nuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSI</td>
<td>Imageur de ciel</td>
<td>Couverture du ciel</td>
<td>Jour/Nuit</td>
</tr>
<tr>
<td>TSI 880</td>
<td>Imageur de ciel</td>
<td>Couverture du ciel</td>
<td>Jour</td>
</tr>
<tr>
<td>IRT</td>
<td>Pointeur zénithal</td>
<td>Fraction nuageuse par séries temporelles</td>
<td>Jour/Nuit</td>
</tr>
</tbody>
</table>

Tableau 9 : Liste des principaux instruments de couverture nuageuse dans la dotation permanente du SGP.

Figure 98 : TSI 880 faisant partie de l’instrumentation permanente du SGP.
Figure 99 : WSI (Whole Sky Imager) faisant partie de l’instrumentation permanente du SGP.

Figure 100 : IRT faisant partie de l’instrumentation permanente du SGP.
En complément, quatre autres instruments décrits dans le tableau 10 ont été déployés sur le site du SGP pour cette campagne.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Type</th>
<th>Mesure de couverture nuageuse</th>
<th>Jour/Nuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIR-7</td>
<td>Balayage infrarouge</td>
<td>Couverture nuageuse</td>
<td>Jour/Nuit</td>
</tr>
<tr>
<td>TSI 440</td>
<td>Imageur de ciel</td>
<td>Couverture du ciel</td>
<td>Jour</td>
</tr>
<tr>
<td>ICI</td>
<td>Imageur de ciel infrarouge</td>
<td>Champ de vision 35°</td>
<td>Jour/Nuit</td>
</tr>
<tr>
<td>IRT</td>
<td>Balayage sur un secteur angulaire de 60 à 90°</td>
<td>Fraction nuageuse par série temporelle</td>
<td>Jour/Nuit</td>
</tr>
</tbody>
</table>

Tableau 10 : Instruments complémentaires déployés sur la site du SGP pour la campagne.

Figure 101 : TSI 440 déployé sur le site du SGP pour la campagne
Figure 102 : CIR-7 déployé sur le site du SGP pour la campagne

Figure 103 : ICI déployé sur le site du SGP pour la campagne
En complément de ces instruments, quatre sondages par jour ont été réalisés et ce afin de fournir pour l’interprétation des données sol une bonne connaissance des profils verticaux de température et d’humidité relative.

III- Interprétation des résultats.

III-1 Traitement préliminaire

L’ensemble des données du CIR-7 a été interprété d’une manière assez similaire à celles utilisées sur Bruxelles et Trappes. Toutefois, de plus une nébulosité de nuages fins était recherchée en effectuant un second seuillage jusqu’à une température inférieure de 10°C à la température de seuillage standard. Cette seconde étape permet de prendre en compte les bordures mal résolues des nuages mais ne permet pas de visualiser les nuages de haute altitude type Cirrus. Les plafonds sont calculés à l’aide de profils issus du modèle MSISE-90. Dans le cas où la température mesurée entraînerait des altitudes négatives elles sont systématiquement corrigées à 250 m (Figure 105).

La rotation complète de la tourelle du CIR-7 s’effectue en une minute et trente secondes. À l’issue de chaque balayage, une matrice de températures brutes est générée (30 lignes et 7 colonnes). Chaque température enregistrée avec une émissivité de type corps noir est corrigée avec une valeur d’émissivité de 0,9. Les valeurs de températures zénitales sont alors moyennées ce qui conduit à 181 (6x30 +1) points de mesure.

Les températures obtenues sont seuillées comme précédemment expliqué, afin de déterminer pour chaque balayage les températures correspondant à des zones de ciel clair, de nuages épais et de nuages fins. Un ratio est alors établi afin de générer le premier diagramme.

Les 181 températures obtenues sont ensuite traitées par la fonction de transfert établie à partir des données MSISE-90, qui lie l’altitude en fonction de la température mesurée. Pour chaque balayage on considère la valeur moyenne d’altitude. Ces valeurs de plafond sont présentées dans le second diagramme.

Les altitudes que nous venons de déterminer sont converties en classe d’altitude (1 : bas-2 : moyen- 3 : haut- nuages fins et absence de nuage : 4) comme nous l’avons préalablement défini. Le rapport de nuages de type 1, 2 ou 3 par le nombre total de points correspondant à des nuages épais, permet de déterminer les pourcentages de nuages épais bas, épais moyens et épais haut lors du balayage. Cette grandeur est représentée sur la troisième diagramme.
Figure 104 : Exploitation préliminaire des données issues du CIR-7 pour le 51^{ème} jour de l’année 2003.
La constance du plafond à une hauteur de 250 m pour le jour 86, montre qu’en basse couche et avec une situation « overcast » la validité du profil issu de MSISE-90 peut être discutée. Par ailleurs, CIR-7 et 13 apportent une information altimétrique qui permet de distinguer les trois classes d’altitude et par voie de conséquence d’approcher une amorce de typologie nuageuse de jour comme de nuit. Ces deux apports procurent donc un avantage significatif de la technologie infrarouge (CIR) par rapport à la technologie visible (TSI).

III-2 Distribution spatiale nuageuse

Les données CIR on été comparées jour par jour avec le TSI. Un exemple est fourni sur les figures 123 et 124, correspondant à la journée du 22 Février 2004. La figure 106 est directement fournie par le logiciel d’exploitation du TSI. La fraction du ciel couverte par des nuages épais est indiquée en blanc alors que la fraction couverte par des nuages fins apparaît en bleu ciel. Les deux graphiques sont ainsi basés sur des mesures en temps universel. La figure 107 montre les mesures issues de l’instrument CIR et exploitées de la manière précédemment décrite. Pour les nuages « épais » la convergence entre les deux méthodes est correcte. En ce qui concerne les nuages fins le seuillage par une seconde température inférieure de 10°C à la précédente n’a pas fourni les résultats escomptés. En effet, ce second seuillage semble prendre en compte uniquement les bordures mal résolues des nuages sur des ellipses partiellement recouvertes.
Figure 106 : Nébulosité TSI pour le 22 Février 2003 (l’intensité de nuage fin apparaît en Bleu ciel sur la courbe)

Figure 107 : Nébulosité CIR-7 pour le 22 Février 2003
III-3 Distribution altimétrique.

![Figure 108: Comparaison des altitudes ceilomètre avec les altitudes IR interprétées selon les profils sondage et les profils MSISE-90.](image)

III-4 Comparaison CIR/TSI.

L’objectif des travaux exposés dans le paragraphe suivant est de comparer les images obtenues avec le TSI avec le CIR-7. Deux difficultés se présentent :

- Différence de résolution spatiale entre les deux instruments (66000 pixels pour le TSI et 181 pour le CIR-7).
- Différence de résolution temporelle (une image toutes les 30 secondes pour le TSI et une image toute les 180 secondes pour le CIR-7).

Nous avons choisi de simuler un CIR-7 dans le domaine du rayonnement visible en utilisant les images du TSI. Pour tenir compte des deux difficultés citées précédemment, nous avons recalculé la position des cônes de mesure du CIR-7 sur l'image obtenue par le TSI (Figure 109) et interpolé temporellement les images du TSI pour obtenir les mêmes instants de mesure que ceux du CIR. Ainsi une image "CIR visible" est obtenue à partir de 9 images TSI. Un exemple de traitement est présenté sur la figure 110. L’image de gauche représente les données de température interpolées. L’image centrale représente la composition des 9 images TSI. La figure de droite quant à elle représente l’une des images capturées par le TSI.

![Figure 109: Cônes de visibilité du CIR projetés sur le miroir semi-sphérique du TSI pour une position de la tourelle.](image109.jpg)

![Figure 110: Comparaison image CIR-7, CIR visible, TSI (de gauche à droite).](image110.jpg)
III-5 Conclusions et perspectives

A l'aide de ces images, on réalise des courbes température, rapport rouge/bleu et on constate une dépendance entre cette grandeur et la température IR. Ce fait est illustré sur la figure 127. Cette courbe a été obtenue sur 40 jours de données TSI diurnes. La variation du point à -57°C peut s’expliquer par la mauvaise prise en compte des Cirrus par le CIR-7.

Figure 111 : Evolution du rapport Rouge/Bleu en fonction de la température infrarouge durant la campagne de mesure au SGP.

Une exploitation détaillée de toutes les données collectées lors de cette campagne sera réalisée dans les mois à venir, et sera soumise pour publication.
Conclusions et Perspectives
I- Introduction

Ce chapitre n’a pas pour but de répondre à des problématiques mais de les lister avec une première analyse de manière à préparer de nouveaux travaux de recherche ou de développement technologique sur cet instrument.

II- Optimisation du nombre de capteurs et du temps de balayage

Comme cela a été plusieurs fois mentionné dans ce mémoire, l’objectif de ce projet est la construction d’un instrument de monitoring c’est-à-dire pouvant être déployé en grand nombre dans les réseaux de mesure automatique et par voie de conséquence à un coût raisonnable ; c’est pour cette raison que, comme déjà indiqué, l’orientation vers les pyromètres industriels a été prise.

Les résultats présentés ont montré que l’augmentation du nombre de capteur de 7 à 13 a permis une amélioration significative des résultats, mais ne permettent pas actuellement de statuer définitivement sur le fait que ce nombre de capteurs est optimal. En effet, comme les grilles de mesure le montrent, il persiste un certain nombre de surface hors mesure, c’est pourquoi d’un point de vue fondamental, il serait intéressant de construire un instrument comportant 26 capteurs.

Le temps de balayage est principalement régis par le temps de réponse des pyromètres qui est de l’ordre de 300 ms ce qui conduit à un temps de balayage de l’ordre de 90 secondes. Le mouvement des nuages dans certaines conditions est beaucoup plus rapide ce qui va créer dans la mesure mais également dans la reconstitution de l’image un effet de flou et donc un accroissement de la nébulosité. Cet aspect pourrait être quantifié en période diurne en comparant des résultats avec ceux fournis par un Total Sky Imager (TSI).

Il apparaît utile de mentionner que cet effet de flou est d’autant plus important sur les systèmes à mono pyromètre et à deux degrés de liberté tels ceux proposés par Yankee Environmental Systems (USA) et Heitronics (Allemagne). De plus, les phases de re-calibration face à un corps noir paraissent superflues dans la mesure où les dispositifs pyrométriques ne présentent pas d’instabilité court terme et de plus l’interface nuage-ciel clair étant physiquement mal connue, une grande précision de la température ne paraît pas réaliste.

III- Résistance des optiques au givrage

Lors des essais réalisés sur le site de la DSO à Trappes en octobre 2002, il a été constaté que les lentilles se couvraient d’une fine couverture de givre durant la nuit ce qui rend les mesures totalement caduques. Sur la plupart des instruments optiques d’observation météorologie, ce problème est résolu par une thermalisation des optiques avec des résistances chauffantes à quelques degrés au dessus de l’ambiante. Le matériau constitutif des lentilles (polymère pour les capteurs de type Eurotron) et des fenêtres (Germanium poli pour les capteurs EUROTRON) est réputé comme étant transparent aux radiations infrarouges dans la plage d’utilisation et comme non émissif dans la bande d’émission thermique. Une fois ce problème résolu, il reste à déterminer le lieu d’insertion du dispositif chauffant et de la sonde de température associée mais aussi de déterminer la condition de déclenchement du réchauffage.
Pour des raisons simples de passage du rayonnement à travers la lentille et sans obstruction le dispositif de réchauffage doit être placé sur le pourtour de la lentille tout en préservant une jonction parfaitement étanche entre la lentille et le corps du capteur ce qui n’est pas technologiquement trivial.

Le réchauffage ainsi placé va créer de facto un phénomène de gradient de température à l’intérieur du matériau ce qui implique pour être certain que l’intégralité de la lentille a été traitée, de centrer la thermistance dans l’épaisseur, ce qui est technologiquement réalisable mais en accroissant le coût de chaque capteur d’une manière très importante rendant le concept d’instrument de monitoring (déploiement en grand nombre pour un coût faible) caduque.

Lors des essais, il a été constaté comme pressenti que la phase de repositionnement de la tourelle au Nord permettait une élimination presque totale des gouttelettes d’eau à la surface. Un traitement de la surface externe des lentilles pourrait ainsi éviter l’accrochage des germes de cristallisation sur le matériau et leur élimination presque totale lors de la phase de rotation rapide : il sera donc nécessaire d’optimiser ce traitement mais aussi de veiller à la stabilité de ces « vernis » aux conditions d’environnement ainsi qu’à leurs propriétés de transparence dans la bande infrarouge pyrométrique.

Le développement de l’électronique embarquée permet de mettre à jour une troisième voie d’investigation : en effet, la présence de glace sur la lentille va créer une composante d’émission infrarouge thermique quasi-identique sur chaque capteur qu’il serait vraisemblablement possible de ne pas valider les mesures suite à un traitement numérique.

Ce type de dispositif est peu courant pour les instruments déployés au sol. En effet, on utilise sur les instruments de type spectromètre ou pyranomètre des jets d’air réchauffés. Cette solution n’a pas été retenue car il sera beaucoup plus difficile de connaître la température de la lame d’air au dessus de la fenêtre de pyromètre que de contrôler la mesure de température dans la fenêtre elle-même.

IV- Déploiement en zone tropicale

Comme mentionné précédemment, l’air sec possède une émissivité très faible ne créant aucune interférence avec le rayonnement émis par les masses nuageuses. Nous avons pu montrer que dans les zones de latitude moyenne où les différents essais ont été réalisés ces « poches » de forte humidité n’affectent pas significativement les mesures. Par contre, en zone tropicale l’humidité ambiante est très importante et risque de générer des difficultés en accroissant les températures mesurées. Ces études seront développées par l’équipe du Dr P.W. CHAN du Hong-Kong Observatory.

V- Canal vapeur d’eau.

La suite directe de nos travaux est l’étude du contenu en eau des formations nuageuses dans le but de pouvoir approcher la typologie nuageuse. Pour cela, il est nécessaire de considérer un autre aspect de la spectrométrie infrarouge à savoir celle par absorption. Les satellites météorologiques réalisent à macro et méso échelle ce type de calcul en utilisant les rayonnements issus de la rétro diffusion terrestre aux environs de 3.5 µm. Notre instrument étant orienté vers l’espace lointain, cette solution n’est donc pas envisageable.
La première étape est de définir une source radiative dont le spectre est connu, choix ne pouvant que s’orienter vers l’astre solaire dans une telle configuration. Ce choix limite, il est vrai, l’utilisation du système aux périodes diurnes, mais actuellement aucune alternative n’a été trouvée.

Ce premier facteur étant déterminé, il est nécessaire maintenant de choisir une bande de longueur d’onde d’absorption de l’eau pour laquelle l’intensité incidente est suffisante et l’absorption proportionnelle pour être détectées par des systèmes spectrométriques standards. La bande de longueur d’onde initialement imaginée aux environs de 5 µm a été abandonnée du fait de la faiblesse du rayonnement incident.

Nous nous sommes dès lors orientés vers une bande située entre 1.4 et 1.8 µm. Pour valider ce choix, différentes simulations à l’aide du modèle de transfert radiatif MODTRAN 4 de 1976 ont été réalisées avec des paramètres fixes et variables.

Hypothèses fixées :
- Type de nuage : Alto-stratus.
- Intervalle de longueur d’onde : 1.33 µm - 2.0 µm.
- Couche nuageuse fixée à 2000 m.
- Épaisseur optique : 1.
- Angle zénithal : 30°.

Le premier élément à vérifier a été la quasi-linéarité de l’absorption en fonction de l’épaisseur de la couverture nuageuse. La correspondance entre épaisseur considérée et figures est donnée dans le tableau n°11.

<table>
<thead>
<tr>
<th>Épaisseur de la couche nuageuse (m)</th>
<th>Figure résultante</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 m</td>
<td>Figure 112</td>
</tr>
<tr>
<td>200 m</td>
<td>Figure 113</td>
</tr>
<tr>
<td>1000 m</td>
<td>Figure 114</td>
</tr>
</tbody>
</table>

Tableau n°11 : Simulation de dépendance de l’absorption en fonction de l’épaisseur de la couche nuageuse.
Figure 112 : Irradiances transmise et incidente pour une couche nuageuse de 100 m d’épaisseur.

Figure 113 : Irradiances transmise et incidente pour une couche nuageuse de 200 m d’épaisseur.
Figure 114 : Irradiances transmise et incidente pour une couche nuageuse de 1000 m d’épaisseur.

Pour étudier de manière satisfaisante cette bande de longueur d’onde, il est nécessaire maintenant de fixer l’épaisseur de la couche nuageuse à 200 m et de faire varier l’angle zénithal. La correspondance entre angle zénithal et figures est donnée dans le tableau 12.

<table>
<thead>
<tr>
<th>Angle Zénithal (°)</th>
<th>Figure résultante</th>
</tr>
</thead>
<tbody>
<tr>
<td>60°</td>
<td>Figure 115</td>
</tr>
<tr>
<td>80°</td>
<td>Figure 116</td>
</tr>
</tbody>
</table>

Tableau n°12 : Simulation de dépendance de l’absorption en fonction de l’angle zénithal

Figure 115 : Irradiances transmise et incidente pour une couche nuageuse de 200 m d’épaisseur et un angle zénithal de 60°.
Conclusions:

A notre connaissance, la mesure du contenu en eau des nuages depuis le sol par spectrométrie d’absorption dans la bande infrarouge n’a pas encore été réalisée. Les simulations que nous venons de décrire montrent que l’intensité de l’énergie incidente et résiduelle est suffisante pour être mesurée par un dispositif expérimental. Ceci est un aspect très prometteur mais toutefois devra être confirmé expérimentalement. Il faudra cependant prendre garde à la dynamique du capteur afin que l’énergie résiduelle reste mesurable. Des contacts ont été pris avec différents industriels. Il semble que la difficulté majeure soit dans le choix des filtres minéraux adéquats.

VI- Ebauche d’un nouvel instrument CIR4

VI-1 Avant propos

Les différentes expérimentations menées sur les instruments CIR-7 et CIR-13 ont permis de mettre en évidence leurs limitiations : difficultés de déploiement, alimentation secteur sur site pour la rotation de la tourelle. De plus, le champ de vision de 144 et 140° requiert des sites très dégagés et donc peu nombreux pour permettre une exploitation totale de l’instrument. Le dernier facteur est le coût très élevé qui limite les potentialités de déploiement.

VI-2 Concept de base

L’idée de base est d’utiliser 4 pyromètres axés sur les quatre points cardinaux et inclinés d’un angle zénithal entre 10 et 30° sur une forme vraisemblablement pyramidale (Figure 133).
Les températures seront relevées à la fréquence de 2 Hz et seuillées afin de déterminer un taux de couverture nuageuse par une méthode similaire à celle utilisée par l’algorithme ASOS. Les autres paramètres potentiellement recherchés avec ce nouvel instrument seront :

- plafond,
- dynamique nuageuse,
- quadrant ordinal dans la rose de vents,
- vitesse dans le champ de vision de l’instrument, et
- zone de plus forte concentration.

Cet instrument sera équipé d’une carte PC 104 embarquée et transmettra les données sous forme de chaînes de caractère au format ASCII avec le protocole RS485.

VI-3 Approche par simulation

Afin d’optimiser les algorithmes de traitement et d’optimiser l’orientation des capteurs, des simulations basées sur le modèle préalablement décrit ont été réalisées. Chaque cas est soumis à un calcul de recouvrement avec les ellipses de mesure (Figure 118).
Figure 118 : Exemple de simulation pour une nuage virtuel elliptique recouvrant les quatre zones de mesure des pyromètres.

Différents essais d’angle zénithal et de champ d’ouverture de chaque pyromètre ont été réalisés. Il est certain que les zones sans mesures sont défavorables mais l’extension des zones de mesure crée une décroissance du signal observé ce qui limite verticalement le champ d’investigation du capteur. Un compromis semblant adéquat au niveau de la simulation a été trouvé avec un angle zénithal de 15° de chaque capteur et un champ de vision de +/-6° pour les pyromètres.

Le champ de vision de l’instrument a été défini comme étant le cercle passant par les extrémités des ellipses de mesure. Afin de créer une référence de nébulosité, on réalise un second calcul pour définir le taux de couverture du champ de vision de l’instrument. Un exemple est présenté sur la figure 119.
Figure 119 : Exemple de recouvrement entre le nuage virtuel et le champ de vision de l’instrument CIR-4.

Figure 120 : Exemple de calcul de nébulosité issu des simulations.
Un exemple de calcul de nébulosité est fourni sur la figure 120. Globalement les calculs de nébulosité sont cohérents dans la fourchette de l’Octa près. Une décroissance est observée vers 120 secondes (figure 120) ce qui correspond à un passage du nuage transitant dans la zone centrale du champ de vision de l’instrument.

La simulation fournit des informations relatives à un milieu idéalisé. Le passage aux données expérimentales impliquera un calcul de température de fond. L’obtention de cette grandeur ne pourra pas être statuée pour le moment.

VI-4 Conclusion

Ce projet de nouvel instrument a été inscrit dans ce mémoire de thèse afin de montrer que les connaissances développées pour la mise au point des instruments CIR-7 et CIR-13 trouvent leur application dans d’autres projets. Suite à cette première phase de simulation, il semble raisonnable de conclure que les objectifs pourront être tenus.

VII Conclusion générale

Dans le cadre de la construction d’un instrument autonome, les instruments CIR-7 et CIR-13 peuvent être considérés comme fonctionnels. En matière de nébulosité pour les nuages climatologiquement actifs (nuages épais) le résultat initial est atteint. Pour les nuages fins de type cirrus, les résultats sont insuffisants. Il faudra rechercher à améliorer la dynamique du capteur dans ce domaine de très basse température (environ -60°C) et optimiser notre nouveau capteur pour atteindre -80°C.

En ce qui concerne la hauteur du plafond, il est difficile de conclure dans la mesure où la définition du plafond est imprécise. Le plafond est-il une mesure précise en un point ou une mesure statistique sur la totalité de la voûte nuageuse.
Valorisation de la recherche
Cette thèse a été pour moi un tremplin car il y a maintenant plus d’un an, j’ai créé ma propre société baptisée ATMOS. Notre corps de métier est la conception et la réalisation de systèmes innovants de mesure et d’intégration de données météorologiques.

Le savoir faire d’ATMOS a été reconnu assez rapidement par l’obtention de projets publics notamment dans la mesure de données météorologiques pour faire face aux risques de terrorisme chimique et biologique. Cette année, l’Union Européenne nous a retenu avec dix autres équipes de recherche pour participer à un projet dans le domaine de la sécurité du transport routier. En effet, l’expérience acquise grâce à cette thèse dans la mesure et l’interprétation du rayonnement infrarouge a été un point clef pour l’attribution de la thématique liée à l’état des chaussées.

Des contacts avancés sont en cours également avec l’ANVAR Pays de la Loire pour l’obtention d’une aide permettant d’optimiser nos acquis en matière de mesure et d’interprétation de la couverture nuageuse.
Bibliographie

28- Idso S.B., 1981, A set of equations for full spectrum and 8- to 14 µm and 10.5- to 12.5- µm Thermal radiation for cloudless skies, Water resources research, 17, pp295-304.

Participations passées à des manifestations scientifiques.

<table>
<thead>
<tr>
<th>Année</th>
<th>Manifestation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>14th conf. On numerical weather prediction. Fort Lauderdale, FL, USA.</td>
</tr>
<tr>
<td>2002</td>
<td>Ateliers Expérimentations et Instrumentation, Toulouse, France</td>
</tr>
<tr>
<td></td>
<td>11th conference on Cloud Physics, Ogden, UT, USA.</td>
</tr>
<tr>
<td>2003</td>
<td>Ateliers Expérimentation et Instrumentation, Brest, France.</td>
</tr>
<tr>
<td></td>
<td>IIPS Conference, Long Beach, CA, USA.</td>
</tr>
<tr>
<td></td>
<td>SMOI Conference, Long Beach, CA, USA.</td>
</tr>
</tbody>
</table>
Résumé / Abstract.
Abstract:

For improvement of meso and microscale weather forecast models, forecasters need more and more local data relative to clouds amount, texture and spatial distribution. Moreover climate changes produce more and more hazardous meteorological phenomena induced by clouds. For these reasons, observation networks need instruments for day and night monitoring of the cloud cover.

After a brief history of the meteorological sciences, we report a state of the art of the cloud observation. Before going onto technical and scientific issues of the topic, specifications needed for such instrument have been listed. Considering state of the art, motivations to use thermal infrared technology are described.

A wide set of experimentations still running up to now have been performed in Europe and in the USA. To improvement instrument, different approaches of modelling and theoretical issues have been studied.

The initial goal which was the design of an instrument potentially deployable on the field has been matched. As a conclusion, we present potential optimizations of the instruments and basic considerations for a simpler instrument based on the same IR technique.

Résumé:

Pour l'amélioration des modèles de prévisions météorologiques à micro et méso échelle, les prévisionnistes ont besoin de plus en plus de données locales relatives à la quantité de nuages, à leurs textures et à leur distribution spatiale. De plus les changements climatiques produisent de plus en plus de phénomènes météorologiques dangereux induits par les nuages. Pour cette raison, les réseaux d’observation nuageuse ont besoin d’instruments pour le suivi continu, diurne et nocturne, de la couverture nuageuse.

Après un bref historique de la science météorologique, nous dressons un état de l’art en matière d’observation de la couverture nuageuse. Avant d’entrer dans les aspects scientifiques et techniques de ce sujet une liste des spécifications requises pour un instrument de mesure diurne et nocturne de la couverture nuageuse a été réalisée. Considérant l’état de l’art, les motivations pour utiliser la technologie de l’infrarouge thermique sont décrites.

Une large gamme d’expérimentations toujours en cours à ce jour a été réalisée en Europe et aux Etats-Unis. Pour améliorer l’instrumentation, différentes approches des aspects théoriques et liés à la modélisation ont été étudiés.

Le but initial qui était la conception d’un instrument potentiellement déployable sur le terrain a été atteint. En conclusion, nous présentons des optimisations potentielles des instruments ainsi que des considérations de base pour un instrument plus simple élaboré sur la même technique infrarouge.